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Abstract: This study proposes a stochastic optimisation model for the day-ahead scheduling in power systems, which
incorporates the hourly demand response (DR) for managing the variability of renewable energy sources (RES). DR considers
physical and operating constraints of the hourly demand for economic and reliability responses. The proposed stochastic day-
ahead scheduling algorithm considers random outages of system components and forecast errors for hourly loads and RES.
The Monte Carlo simulation is applied to create stochastic security-constrained unit commitment (SCUC) scenarios for the
day-ahead scheduling. A general-purpose mixed-integer linear problem software is employed to solve the stochastic SCUC
problem. The numerical results demonstrate the benefits of applying DR to the proposed day-ahead scheduling with variable RES.
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Nomenclature

Parameters

NT number of time periods
NG number of available generators
NB number of buses
ND number of renewable energy sources
NJ number of batteries
NS number of scenarios
t index for time periods, t = 1, 2, …, NT

i index for generators, i = 1, 2, …, NG

b index for buses, b = 1, 2, …, NB

k index for renewable sources, k = 1, 2, …, ND

j index for batteries, j = 1, 2, …, NJ

s index for scenarios, s = 1, 2,…, NS

l index for available transmission lines
NBD

b,t number of blocks of energy demand by bus b
at time t

NBG
i,t number of blocks of supply bid offered by

generator i at time t
Ps probability of scenario s
NLi no-load cost of generator i, in $
λDn,b,t marginal benefit of the nth block of the bid at

bus b and time t, in $/MW
λGm,i,t marginal production cost of the mth block of

generator i at time t, in $/MW
VOLLb,t value of lost load at bus b at time t, in $
RCAPt system reserve requirement at time t,

in MW
Pmax
i upper generation limit of unit i, in MW

G
(·)
(·) shift factor
DRmin

b,t minimum curtailed load at bus b and time t,
in MW
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DRmax
b,t maximum curtailed load at bus b and time t,

in MW
Dmax

b,t maximum load at bus b at time t, in MW
ΔGi maximum ramp up/down rate of generator i,

in MW/min
ΔDb pick-up or drop-off rate of load at bus b
X on
b,t−1 ON time of load at bus b at time t− 1, in hour

X off
b,t−1 OFF time of load at bus b at time t− 1, in

hour

UTb minimum ON time of load at bus b, in
hour

DTb minimum OFF time of load at bus b, in hour
Emax
b maximum energy change at bus b in the

scheduling horizon, in MW
qc
j

minimum charge of storage j, in MW

�qcj maximum charge of storage j, in MW

qd
j

minimum discharge of storage j, in MW

�qdj maximum discharge of storage j, in MW

ej minimum state of storage j, in MW
�ej capacity of storage j, in MW
τ reserve responsive time, usually in 10

minutes
η period span, usually in hour
λ(·) mean time to failure for system component,

in hour
μ(·) mean time to repair for system component, in

hour

Variables

dsn,b,t demand in the nth block of the stepwise demand bid
at bus b at time t in scenario s, in MWh
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psm,i,t generation in the mth block of piecewise linear

output by generator i at time t in scenario s, in MW
Si,t(·) start-up or shut-down cost of unit i at time t, in $
Xi,t time periods when unit i has been ON or OFF at

time t, in hour
DLs

b,t loss of load at bus b at time t in scenario s, in MW
psi,t dispatch of generator i at time t in scenario s,

in MW
gsk,t dispatch of renewable source k at time t in scenario

s, in MW
qsj,t charge (− ) or discharge ( + ) of storage j at time t in

scenario s, in MW
Cs

j,t state of charge (SOC) of storage j at time t in
scenario s, in %

DEb,t expected price-responsive load at bus b at time t,
in MW

DBs
b,t customer base load at bus b at time t in scenario s, in

MW
DRs

b,t adjustable load of bus b at time t in scenario s,
in MW

RUs
i,t reserve provided by generator i at time t in scenario

s, in MW
RBs

j,t reserve provided by storage j at time t in scenario s,
in MW

zi,t commitment status of thermal generator i at time t;
1 for ON and 0 for OFF

ysb,t state of curtailment at bus b at time t in scenario s;
1 when curtailed and 0 otherwise

1 Introduction

The hourly demand response (DR) program in electricity
markets could provide significant benefits to market
participants and customers. Such benefits include lower
hourly market prices, lower volatility in hourly market prices,
enhanced system reliability and a smaller chance for the
market power exertion by generating companies (GENCO), as
customers play a more active role in power system operations.
DR offers incentives for lowering electricity usage at times
when electricity prices are high or when the power system
reliability is in question [1–3]. DR becomes more attractive to
customers and ISOs as electricity demands, fuel prices and
the quest for achieving a higher system reliability increase.
The DR program includes reliability and economic

considerations. In the reliability DR program, participating
customers are paid incentives for measured baseline load
reductions during contingency conditions [2]. In the
economic DR program, participating consumers would
curtail hourly loads voluntarily in response to market prices.
In this case, customers would shift their less critical hourly
loads to periods that would balance potential cost savings
against customer inconvenience [4–8]. The efficient market
dynamics are represented by incorporating both economic
and reliability DR programs into the market clearing process.
The integration of renewable energy sources (RES) into

power systems could reduce transmission losses and
congestion by dispersing power generation, improve the
system reliability, defer infrastructure upgrades by the
installation of local power supply, reduce carbon footprint
by customising the use of RES and improve the system
efficiency by enhancing the power quality according to
customer requirements [9–11]. However, the widespread
usage of variable RES could be problematic for power
system operations [12, 13].
The simulation-based approach is generally applied when

considering RES. A set of power production scenarios with
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their probabilities is introduced to handle uncertainties [14].
The stochastic unit commitment and dispatch with high
wind penetration are examined for rolling planning with
scenario trees [15]. Rolling planning is carried out for
rescheduling which is based on the most up-to-date wind
forecasts and existing schedules [16]. A methodology is
proposed to determine the required level of spinning and
non-spinning reserves with a high penetration of wind
power [17]. The Monte Carlo simulation (MCS) method is
applied to evaluate the performance of grid-connected wind
turbine generators (WTGs) [18, 19]. WTGs are modelled as
energy-limited units by using a load modification technique
[20]. Reliability indices are developed for hybrid solar-wind
generation systems [21].
This paper proposes a short-term stochastic security-

constrained unit commitment (SCUC) model for day-ahead
markets, which incorporates a coordinated DR and storage
program for managing variable RES, random outages of
generating units and transmission lines, and load and wind
forecast errors. Both economic and reliability DR programs are
considered in the presented DR model. The operating
characteristics of loads include stepwise price bids and physical
constraints of loads. The scenario reduction is adopted in MCS
as a tradeoff between calculation speed and solution accuracy.
A general-purpose mixed-integer linear problem (MILP)
software is employed to solve the stochastic SCUC problem.
The rest of paper is organised as follows: The market-

clearing mechanism is provided in Section 2. The MCS
method for simulating the stochastic SCUC is described in
Section 3. The mathematical formulation of the stochastic
SCUC problem is proposed in Section 4. Numerical testing
results are presented and analysed in Section 5. The
observation and the concluding remarks are provided in
Sections 6 and 7, respectively.

2 Proposed market-clearing mechanism

2.1 Day-ahead market

The ISO received bids from market participants including
load aggregators and DR providers, and clears the market
by optimising the hourly dispatch of individual generating
units over a scheduling horizon. The day-ahead schedule
will maximise the social welfare while satisfying
system-wide limits and operating constraints of individual
market participants.

2.2 DR program

In the proposed DR model, loads include the customer base
load (CBL) and the price responsive load (PRL). CBL is
forecasted based on the historical data; for example, the
customer’s average electricity usage in the curtailment bid
period during the 10 days prior to the day when the bid was
submitted [22]. The economic DR may include blocks of
hourly PRL bids with corresponding prices. The hourly
constraints may include expected PRL, minimum/maximum
curtailable load, maximum load pick-up/drop-off rate and
minimum up/down time of load curtailment. PRL can be
curtailed or shifted to other time periods for economic
reasons as scheduled by ISO in the day-ahead market. The
proposed model allows customers to participate in reliability
DR program. The CBL of participating customers could be
curtailed in the case of a system emergency. Customers are
required to submit the maximum loss of load and the value
of lost load (VOLL) to the DA market and the load
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curtailment will be scheduled by ISO. Unlike the PRL in
economic DR, the loss of load is involuntary [23, 24]. If
load shedding occurs, customers will get compensated
equivalent to the amount of lost load multiplied by the
corresponding VOLL.
Both DR programs offer operation reserves to the ancillary

service market. The energy and reserve markets are scheduled
and cleared simultaneously through MILP in the proposed
model.

3 MCS for stochastic SCUC

The stochastic SCUC in our proposed model includes the
following:

3.1 Renewable energy sources

We disregard for simplicity the correlation of load and RES
and treated them independently in the scheduling horizon.
Suppose the random photovoltaic array (PVA) output
follows a Beta distribution and the random WTG output
follows a Weibull distribution at each time period [25]. The
continuous probability distribution functions (PDFs) are
approximated by a discrete distribution. Let PVAt and
WTGt denote discrete probability distributions for PVA and
WTG outputs at time t, respectively. Then

PVAt = snt , P snt
( ){ }[ ]

, n = 1, 2, . . . , NSt (1)

WTGt = wn
t , P wn

t

( ){ }[ ]
, n = 1, 2, . . . , NWt (2)

where NSt and NWt are the total number of discrete output
levels in PVAt and WTGt, respectively; s

n
t and wn

t are the nth
discrete levels of PVA and WTG outputs at time stage t,
respectively; P snt

( )
and P wn

t

( )
are probabilities of occurrence

with respect to snt and wn
t , which can be calculated based on

their probability density functions (PDFs).
We divide the entire scheduling horizon into several time

stages in which each stage spans several hours. For each
time stage, several scenarios are created based on historical
data in which PVA and WTG outputs are different from the
corresponding forecasts. The probability of each scenario at
each stage is calculated as its weight is based on the PDF.
The weight for the final-stage scenario is obtained by
multiplying corresponding weights along the scenario tree.
The stochastic output of PVA or WTG is then represented
by possible scenarios with their corresponding probability.

3.2 Monte Carlo simulation

The number of samples needed for a given accuracy level is
irrelevant to the system size; so the MCS method is suitable
for representing the uncertainty in large-scale optimisation
problems. MCS includes random outages of generating
units and transmission lines [26, 27] as well as CBL
forecast errors which represent variations around the
forecasts at each time stage. The CBL forecast errors are
represented by normal distribution functions in which the
mean values are the forecasts and the standard deviations
are percentages of the mean values. The outages of
generator and transmission line are simulated based on
forced outage rates and repair rates [27]. In each scenario, a
sampling method [26] is used to determine the 0/1 value of
system component availability. Scenario reduction is
adopted as a tradeoff between computational burden and
228
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modelling accuracy in large-scale DR scheduling problems
[28]. The probability metrics based on the scenario
reduction method is applied.

4 Stochastic problem formulation and
constraints

We assume electricity market participants are independent
bidders who bid at their respective marginal costs. ISO
calculates the hourly SCUC and DR schedule, and hourly
locational marginal prices (LMPs). The problem objective
and constraints are formulated as follows.

4.1 Objective function

The objective of the proposed SCUC problem is to determine
the day-ahead hourly schedule of generating units and hourly
DR schedule such that the expected total social welfare is
maximised. The social welfare is defined as the sum of
consumer surplus and the producer surplus as shown in
Fig. 1. The objective function is expressed as follows

max
∑NS

s=1

Ps

∑NT

t=1

∑NB

b=1

∑NBD
b,t

n=1

lDn,b,td
s
n,b,t

⎧⎨
⎩

−
∑NT

t=1

∑NG

i=1

∑NBG
i,t

m=1

lGm,i,tp
s
m,i,t + NLizi,t + Si,t Xi,t, zi,t

( )⎡
⎣

⎤
⎦

−
∑NT

t=1

∑NB

b=1

VOLLb,tDL
s
b,t

}

(3)

The first term in the objective function (3) is the customer
gross surplus and the second term is the generation cost of
thermal units, which includes fuel cost, no-load cost and
piecewise linear start-up and shut-down cost. The third term
represents the cost of load curtailment. The objective is
subject to the following individual scenario constraints.

4.2 System and unit constraints

Constraints (4), (6) and (8) are on power balance, system
reserve and transmission flows, respectively. Constraints (5)
and (7) show unit spinning reserve and line flows,
respectively. Other physical constraints of generating units
are generating unit limits, ramp rate limits and min up/down

Fig. 1 Net social welfare and market equilibrium
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time limits [1, 29, 30].

∑NG

i=1

∑NBG
i,t

m=1

psm,i,t +
∑ND

k=1

gsk,t +
∑NJ

j=1

qsj,t −
∑NB

b=1

DEb,t − DRs
b,t

( )
= 0, ∀t, ∀s (4)

RUs
i,t = zi,t ·min Pmax

i − psi,t, DGi · t
{ }

, ∀i, ∀t, ∀s (5)

∑NG

i=1

RUs
i,t +

∑NJ

j=1

RBs
j,t +

∑NB

b=1

DRs
b,t ≥ RCAPt, ∀t, ∀s (6)

Fs
l,t =

∑NG

i=1

GG
l,i

∑NBG
i,t

m=1

psm,i,t +
∑ND

k=1

GD
l,kg

s
k,t +

∑NJ

j=1

GJ
l,jq

s
j,t

−
∑NB

b=1

GL
l,b DEb,t − DRs

b,t

( )
, ∀l, ∀t, ∀s

(7)

−�Fl ≤ Fs
l,t ≤ �Fl, ∀l, ∀t, ∀s (8)

4.3 DR constraints

Fig. 2 shows a stepwise DR bid in which OA, OC and OD
represent the CBL, the expected PRL, and the maximum
hourly load, respectively. CB and CF are the minimum and
maximum load curtailment, respectively. OE denotes the
customer load scheduled by ISO in the day-ahead market.
Point E (end point of the scheduled load) would be located
within two zones of FB and CD as highlighted in Fig. 2.
The PRL can be curtailed or shifted to another time period
for satisfying system economic or reliability constraints.
The ratio of available PRL to the expected PRL is defined
as load participation factor (LPF), which is expressed as
LPF = AC/OC in Fig. 2. A higher LPF indicates a higher
price elasticity of demand and more curtailable loads.
DRs

b,t is the adjustable load of bus b at time t in scenario s
which is calculated as the difference between the expected
PRL and the scheduled load as shown in Fig. 2. The
decision variables in the proposed DR model are DRs

b,t and
its 0–1 state. DRs

b,t is positive when the load is shifted out
from bus b at time t, and negative when the load is shifted
to bus b at time t.
The DR constraints are listed in (9)–(15). The correlation

between block demand and total demand is given in (9).
The limit on curtailable load is provided in (10), which may
either reflect physical load limits or be imposed by ISO.

The loss of load constraint is shown in (11), which
indicates that loss of load could occur if and only if all
PRLs are completely curtailed. Limits on pick-up/drop-off
rate of load, min up/down time for load curtailment and
allowable change of bus load across schedule horizon are
given in (12)–(15), respectively. Constraint (12) would
restrict the rate of customer load changes between any two
successive hours. Constraint (13) indicates the minimum
number of hours that a load would be curtailed. Constraint
(14) shows the minimum number of hours when the load
would be supplied. Constraint (15) would limit the total
number of load curtailments in the scheduling horizon. By
setting Emax

b to 0 in (15), the curtailed load at certain time
periods will be fully shifted to other periods.

∑NBD
b,t

n=1

dsn,b,t = DEb,t − DRs
b,t, ∀b, ∀t, ∀s (9)

DRmin
b,t y

s
b,t ≤ DRs

b,t ≤ DRmax
b,t ysb,t, if DRs

b,t ≥ 0
DRs

b,t ≥ DEb,t − Dmax
b,t , else

{
∀b, ∀t, ∀s

(10)

DLs
b,t = max DBs

b,t − DEb,t − DRs
b,t

( )
, 0

{ }
,

∀b, ∀t, ∀s (11)

DEb,t − DRs
b,t

( )− DEb,t−1 − DRs
b,t−1

( )∣∣ ∣∣ ≤ DDb,

∀b, t = 2, 3, . . . , NT , ∀s
(12)

X s,on
b,t−1 − UTb

( )
ysb,t−1 − ysb,t
( ) ≥ 0,

∀b, t = 2, 3, . . . , NT , ∀s
(13)

X s,off
b,t−1 − DTb

( )
ysb,t − ysb,t−1

( ) ≥ 0,

∀b, t = 2, 3, . . . , NT , ∀s
(14)

0 ≤
∑NT

t=1

DRs
b,t ≤ Emax

b , ∀b, ∀t, ∀s (15)

4.4 Storage constraints

We assume the power system is equipped with a storage with
the following constraints: input and output limits of storage,
SOC dynamics, SOC limits, initial/final SOC and reserve
contribution of storage are given in (16)–(20), respectively
[31]. In (16), qsj,t is negative when storage is charging,
positive when the storage is discharging and 0 when the
storage is not functional. Constraint (20) indicates that
reserve provided by storage is the minimum of its existing
capacity and the maximum discharge.

qsj,t [ 0, −�qcj , −qc
j

[ ]
, qd

j
, �qdj

[ ]{ }
, ∀j, ∀t, ∀s (16)

Cs
j,t = Cs

j,t−1 − qsj,t · h/�ej,
∀j, ∀t = 2, 3, . . . , NT , ∀s

(17)
Fig. 2 Stepwise demand response bid
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Cj =
ej
�ej
≤ Cs

j,t ≤ 1, ∀j, ∀t, ∀s (18)

Cs
j,0 = C0

j , Cs
j,T = CT

j , ∀j, ∀s (19)

RBs
j,t = t ·min Cs

j,t∗�ej, �qdj
{ }

, ∀j, ∀t, ∀s (20)

Here, (4)–(20) are constraints that are related to individual
scenarios. In each scenario, the availability of system
components is represented by a set of input parameters in
the proposed optimisation formulation. For the purpose of
presentation, this additional set of variables is not
introduced in the SCUC formulation. Thermal units are
formulated as non-quick start units with hourly scenario
commitments which are the same as those in the base case.
However, the dispatch of individual committed thermal
units in scenarios could be altered in response to scenario
realisations. The final dispatch of a thermal unit is its
expected dispatch which is the corresponding weighted
average solution of all possible scenarios.

5 Numerical solution for the proposed
problem

Numerical cases are studied for a modified 6-bus system and a
modified IEEE 118-bus system. The MILP model (3)–(20) is
solved using the ILOG CPLEX 11.0 [32] in Microsoft Visual
C# .NET on an Intel Xeon Server with 64 GB RAM. The DR
program is implemented at all load buses and curtailed load
will be shifted to other periods. The hourly PRLs consist of
a single energy block with a bidding price of 20 $/MWh.
The system reserve requirement is set as the largest
generating unit capacity.

5.1 Modified 6-bus system

The modified 6-bus system, shown in Fig. 3, has three thermal
units, one WTG, and seven transmission lines. The
characteristics of generators, transmission lines and the
expected hourly loads are listed in Tables 1–3, respectively.
Three cases are studied to illustrate the impact of DR

program on the RES variability in the day-ahead scheduling:

Fig. 3 One line diagram of 6-bus system
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Case 1: DR is considered at all load buses.
Case 2: Combined DR and WTG variability is considered.
Case 3: Effect of DR, WTG variability and storage on hourly
LMPs is compared.

These cases are discussed as follows:
Case 1: Economic DR program is considered at all load

buses. Fig. 4 shows the hourly system demand with several
LPFs. At peak hours, the hourly load profile will be more
flat as LPF increases. In Fig. 4, the load profile with LPF =
0.3 is almost flat during Hours 6–24, and the standard
deviation of hourly load is reduced from 101 to 18 MW at
0.3 LPF. A flat load profile corresponds to lower LMPs,
lower transmission congestion and lower system production
cost. Also, power system operations will be more efficient
since the hourly demand fluctuations are less frequent [2].
We assume a large WTG is located at Bus 5 with its
deterministic hourly profile shown in Fig. 5. With a higher
LPF, the system load profile will be increasingly close to
the WTG profile. In an extreme case, when LPF = 0.9, the
system load profile would almost match that of WTG in
which the peak load is shifted to other hours when the
WTG output reaches its peak.
Case 2: In this case, economic DR at all load buses and

variable WTG output at Bus 5 are included. The forecasted
hourly WTG output is based on http://www.nrel.gov/. The
24-hour scheduling horizon is divided into four time stages
when each time stage spans 6 hours. For each time stage, five
scenarios including the forecasted output are considered in
which the probability of each scenario is calculated according
to the PDF of Weibull distribution. For simplicity, the
variance is fixed during the horizon. There are 54 = 625
scenarios and each scenario represents a possible WTG

Table 3 Expected hourly load for 6-bus system

H Load,
MWh

H Load,
MWh

H Load,
MWh

H Load,
MWh

1 175.19 7 168.39 13 242.18 19 245.97
2 165.15 8 177.60 14 243.60 20 237.35
3 158.67 9 186.81 15 248.86 21 237.31
4 154.73 10 206.96 16 255.79 22 215.67
5 155.06 11 228.61 17 256.00 23 185.93
6 160.48 12 236.10 18 246.74 24 195.60

Table 2 Transmission line data for 6-bus system

Line no. From bus To bus X, pu Flow
limit, MW

λl, h μl, h

1 1 2 0.170 200 23.5 0.5
2 1 4 0.258 100 23.7 0.3
3 2 3 0.037 100 23.6 0.4
4 2 4 0.197 100 23.6 0.4
5 3 6 0.018 100 23.7 0.3
6 4 5 0.037 100 23.6 0.4
7 5 6 0.140 100 23.8 0.2
Table 1 Generators’ data for 6-bus system

U Pmax, MW Pmin, MW Initial status, h Min down, h Min up, h Ramp, MW/h λi, h μi, h

G1 220 100 4 4 4 30 23.6 0.4
G2 100 10 − 3 3 2 50 23.7 0.3
G3 20 10 − 1 1 1 20 23.8 0.2
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output. The scenario reduction method is not applied to this
small system. The MCS convergence characteristics for the
WTG output and the value of objective function in the 625
scenarios are shown in Fig. 6. The relative error is given as
1.96× SY /

���
M

√( )
/�Y × 100%; , where SY, M and �Y are

standard deviation, number of scenarios and expected value of
variable Y under 95% confidence interval, respectively. In
Fig. 6, the relative error of the total WTG output with 625
simulations is less than 1.5%, whereas the relative error of
objective function is less than 0.2%. Moreover, the relative
errors are within 2% after the initial 250 simulations.

Fig. 4 Actual and shifted loads

Fig. 5 Comparison of WTG output

Fig. 6 Convergence characteristic of MCS
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Case 3: In this case, the effects of considering DR, WTG
variability and storage on the hourly LMP are discussed.
We study the following four scenarios in this case:

1. Scenario 3.1: Base case without considering WTG or DR.
2. Scenario 3.2: A variable WTG is considered at Bus 5. The
MCS with 625 scenarios used in Case 2 is adopted here.
3. Scenario 3.3: An aggregated and large storage (e.g.
pumped storage hydro) located at Bus 5 is added to
Scenario 3.2 in order to show explicitly the effect of the
storage on hourly LMP profile. The storage parameters are
listed in Table 4.
4. Scenario 3.4: DR is considered at Bus 5 based on Scenario
3.2. For comparison, the upper bound of hourly PRL is set to
the maximum charge/discharge in Table 4. The pick-up/
drop-off rate limits of loads and the minimum up/down
times are not considered for load curtailment.

LMPs at bus 5 in the four scenarios are compared in Fig. 7.
Here, the LMPs in Scenario 3.1 spike at Hours 12–21. In
Scenario 3.2, the time period is shortened to Hours 14–19.
However, the peak-valley difference of LMPs becomes
larger due to the WTG variability. The price spike in
Scenarios 3.3 is mitigated as the storage shifts peak loads to
off-peak hours. Scenario 3.4 shows a smoother LMP profile
with 1.20 $/MWh of peak-valley LMP difference by
shifting loads to off-peak hours. The LMP fluctuations in
Scenario 3.4 are reduced as compared to those in Scenario
3.3. A large storage is less effective than DR in reducing
the volatility of hourly LMP because the charging of
storage may be limited at off-peak hours. Fig. 8 shows the
expected hourly storage output against the expected LMP in
Scenario 3.3. Here, the storage is charging during low LMP
hours and discharging when the LMP is high.

5.2 Modified IEEE 118-bus system

The IEEE 118-bus system has 54 thermal generators, 186
branches and 91 load buses. The parameters of generators,
transmission network and load profiles are given in [1]. The
economic and reliability DR programs at all load buses,
random outages of generating unit and transmission lines,

Fig. 7 LMPs at Bus 5
Table 4 Storage data for 6-bus system

Capacity, MWh Max charge, MW Min charge, MW Max discharge, MW Min discharge, MW Initial SOC,% Final SOC,%

300 50 30 50 30 20 20
231
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load forecast errors, and variable RES, and aggregated storage
system are considered. There are three RES including 2
WTGs (at Buses 15,54) and 1 PVA (at Bus 96). A storage
with parameters listed in Table 4 is installed at buses with
RES. The hourly WTG forecast is provided at http://www.
nrel.gov/. VOLL is set at 100 $/MWh. The hourly load
forecast error is represented by ± 5% of the CBL forecast.
We generate 1800 scenarios and reduce the number to 185
by scenario reduction.
Table 5 lists the results in which EXP is the expected value

and RERR is the relative error. Here, the expected average
LMP is 19.06 ± 0.23 $/MWh with a 0.2 LPF and 20% load
shedding. Note that the 19.06 ± 0.23 shows that 5% of
LMPs will be beyond the given interval of ± 0.23. The
smaller the confidence interval, the more accurate will be
the expectation. In spite of high VOLL, the load shedding
occurs at certain scenarios with transmission line outages.
In such scenarios, the average LMP is much higher than
that of the base case. In Table 5, the expected average LMP
decreases from 19.06 to 18.73 $/MWh as LPF increases
from 0.2 to 0.3. In this case, more operating reserves are
made available with a higher LPF. The results suggest that
the benefit of larger economic DR is more significant when
considering system contingencies. The total CPU time is
6.2 h when 185 scenarios are applied. The relative errors of
operating cost and average LMP are less than 2% as listed
in Table 5. The relative errors will be smaller and the
accuracy will be higher if more scenarios are introduced. In
such cases, parallel computation can be further adopted in
each scenario to reduce the total CPU time.
Fig. 9 shows the reduction in operating costs, average

LMPs and load payments as a function of RES
contribution, which are compared with the base SCUC
(without DR or RES.) In Fig. 9, the reduction in economic
metrics increases almost linearly as RES contribution
increases. When incorporating a 3.7% RES contribution and
a 20% DR, the system operating cost, average LMP and
load payment are reduced by 6.93, 17.77 and 20.71%,

Fig. 8 Hourly storage charges against LMP at Bus 5

Table 5 DR results with 3 RES (95% confidence interval)

20% load
shedding

LPF = 0.2 LPF = 0.3

Operating
cost, $

Average
LMP,
$/MWh

Operating
cost, $

Average
LMP,
$/MWh

EXP 1 660 250 ±
22 937

19.06 ±
0.23

1 652 905 ±
25 193

18.73 ±
0.11

RERR 1.38% 1.21% 1.52% 0.59%
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respectively. Fig. 10 shows the variation in economic
metrics with LPFs when the RES contribution is 3.7%.
Comparing Figs. 9 and 10, it is seen that DR has a higher
impact on the reduction of average LMP and load payment,
but RES has a higher impact on the reduction of operating
cost. The contribution of DR, RES and storage to the
average LMP reduction is shown in Fig. 11. In this case,
DR is the leading factor in contributing to the 64.3%
reduction in the average LMP, which is followed by those
of WTG (18.2%), storage (10.4%) and PVA (7.1%).
In Fig. 12, WTG curtailments with or without DR at bus 54

are compared. The expected available wind energy in this
case is 24,631 MWh, which is 21.7% of the total daily
energy demand. The available wind generation represents
the upper limit of actual wind dispatch and the difference
between the upper limit and the actual dispatch is defined
as wind curtailment. In Fig. 12, the available wind
generation is dispatched without any curtailment at Hours
1–13, 18 when the hourly available wind generation is
below 232 MW. The lightly shaded area in Fig. 12 shows
wind curtailment when considering a 20% DR at Bus 54.

Fig. 9 Economic metrics against RES

Fig. 10 Economic metrics against LPF

Fig. 11 Contribution percentages to average LMP reduction
IET Gener. Transm. Distrib., 2013, Vol. 7, Iss. 3, pp. 226–234
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Here, wind curtailment is higher at Hours 14–17, 19–24 when
the available wind generation is higher than 256 MW. The
flows on Lines 77 and 78, which connect Buses 54–55 and
Buses 54–56, reach their respective limits during those
curtailment hours. However, when DR is applied, Bus 54
faces a higher wind curtailment without DR, which is
represented by darker shade in Fig. 12. This is because the
corresponding load can be shifted between hours. Table 6
shows the DR effect on reducing the system wind
curtailment. Here, a 20% DR at every load bus would
reduce the wind curtailment from 6948 to 4958 MWh,
whereas the wind penetration is increased from 13.4 to 17.3%.

6 Observations

We list the observations below based on our numerical
results.

1. Economic DR offers a flat load profile that leads to lower
LMPs, lower transmission congestion and lower system
operating cost. Economic DR benefits are more significant
when considering system contingencies. Reliability DR
provides a chance to maintain the system security.
2. DR has a more significant impact than RES on lowering
average LMPs and load payments; RES has a more
significant impact than DR on reducing operating costs. DR
increases the wind penetration by reducing wind curtailments.
3. The storage system is less effective than DR on lowering
the hourly LMP fluctuations which is due to the physical
limitation of storage. When compared with RES and storage
systems, DR is more effective in reducing average LMPs.

7 Conclusions

In this paper, we propose a stochastic optimisation model for
the day-ahead power system scheduling, which incorporates
the hourly DR for managing the variability of RES.
Physical and operating constraints of hourly demand are
considered in DR for economic and reliability responses.
The MCS creates multiple scenarios for representing
possible realisations of uncertainty. Random outages of
system components and forecast errors for hourly load and
RES are included in MCS. Numerical results demonstrate
that DR offers a flat load profile that leads to lower

Fig. 12 Expected dispatch of WTG at bus 54

Table 6 Effect of DR on wind energy in the system

EXP Without DR With DR (LPF = 0.2)

Total wind curtailment, MWh 6948 4958
Wind penetration,% 13.4 17.3
IET Gener. Transm. Distrib., 2013, Vol. 7, Iss. 3, pp. 226–234
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transmission congestions, lower system operating costs and
lower LMPs. In addition, DR is the leading factor for
lowering LMPs, which outperforms the utilisation of
generation resources such as RES and storage. DR increases
wind penetration in terms of reducing wind curtailments,
which make DR an effective tool for managing the
variability of RES.

8 Acknowledgment

This study was funded in part by the DOE Award
# DE-FC26–08NT02875.

9 References

1 Shahidehpour, M., Yamin, H., Li, Z.Y.: ‘Market operations in electric
power systems’ (Wiley, New York, 2002)

2 Albadi, M.H., El-Saadany, E.F.: ‘A summary of demand response
in electricity markets’, Electr. Power Syst. Res., 2008, 78, (11),
pp. 1989–1996

3 U.S. Department of Energy: ‘Benefits of demand response in electricity
markets and recommendations for achieving them’, 2006

4 Conejo, A.J., Morales, J.M., Baringo, L.: ‘Real-time demand response
model’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 236–242

5 Wang, J., Bloyd, C., Hu, Z., Tan, Z.: ‘Demand response in China’,
Int. J. Energy, 2010, 35, (4), pp. 1592–1597

6 Khodaei, A., Shahidehpour, M., Bahramirad, S.: ‘SCUC with hourly
demand response considering intertemporal load characteristics’, IEEE
Trans. Smart Grid, 2011, 2, (3), pp. 564–571

7 Herter, K., McAuliffe, P., Rosenfeld, A.: ‘An exploratory analysis of
California residential customer response to critical peak pricing of
electricity’, Energy, 2007, 32, (1), pp. 25–34

8 Valero, S., Ortiz, M., Senabre, C., et al: ‘Methods for customer and
demand response policies selection in new electricity markets’, IET
Gener. Transm. Distrib., 2007, 1, (1), pp. 104–110

9 Ummels, B.C., Gibescu, M., Pelgrum, E., Kling, W.L., Brand, A.J.:
‘Impacts of wind power on thermal generation unit commitment and
dispatch’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 44–51

10 Atwa, Y.M., El-Saadany, E.F., Salama, M.M.A., et al: ‘Optimal
renewable resources mix for distribution system energy loss
minimization’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 360–370

11 Ochoa, L.F., Harrison, G.P.: ‘Minimizing energy losses: optimal
accommodation and smart operation of renewable distributed
generation’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 198–205

12 Mangueira, H.H.D., Saavedra, O.R., Pessanha, J.E.O.: ‘Impact of wind
generation on the dispatch of the system: a fuzzy approach’,
Int. J. Electr. Power Energy Syst., 2008, 30, (1), pp. 67–72

13 Tsikalakis, A.G., Hatziargyriou, N.D., Katsigiannis, Y.A., Georgilakis,
P.S.: ‘Impact of wind power forecasting error bias on the economic
operation of autonomous power systems’, Wind Energy, 2009, 12, (4),
pp. 315–331

14 Celli, G., Pilo, F.: ‘MV network planning under uncertainties on
distributed generation penetration’. Proc. 2001 IEEE PES Summer
Meeting, vol. 1, pp. 485–490

15 Tuohy, A., Meibom, P., Denny, E., O’Malley, M.: ‘Unit commitment for
systems with significant wind penetration’, IEEE Trans. Power Syst.,
2009, 24, (2), pp. 592–601

16 Meibom, P., Barth, R., Hasche, B., et al: ‘Stochastic optimization model
to study the operational impacts of high wind penetrations in Ireland’,
IEEE Trans. Power Syst., 2011, 26, (3), pp. 1367–1379

17 Morales, J.M., Conejo, A.J., Perez Ruiz, J.: ‘Economic valuation of
reserves in power systems with high penetration of wind power’,
IEEE Trans. Power Syst., 2009, 24, (2), pp. 900–910

18 Desrochers, G., Blanchard, M., Sud, S.: ‘A Monte Carlo simulation
method for the economic assessment of the contribution of wind
energy to power systems’, IEEE Trans. Energy Convers., 1986, EC-1,
(4), pp. 50–56

19 Billinton, R., Chen, H., Ghajar, R.: ‘A sequential simulation technique
for adequacy evaluation of generating systems including wind energy’,
IEEE Trans. Energy Convers., 1996, 11, (4), pp. 728–734

20 Billinton, R., Chowdhury, A.A.: ‘Incorporation of wind energy
conversion systems in conventional generating capacity adequacy
assessment’, Proc. Inst. Electr. Eng.-C, 1992, 139, (1), pp. 47–56

21 Tina, G., Gagliano, S., Raiti, S.: ‘Hybrid solar/wind power system
probabilistic modelling for long-term performance assessment’, Sol.
Energy, 2006, 80, (5), pp. 578–588
233
& The Institution of Engineering and Technology 2013



www.ietdl.org

22 Day-Ahead Demand Response Program Manual at NYISO. Available

at: http://www.nyiso.com/public/webdocs/products/demand_response/
day_ahead/dadrp_mnl.pdf

23 Bouffard, F., Galiana, F.D., Conejo, A.J.: ‘Market-clearing with
stochastic security – Part I: Formulation’, IEEE Trans. Power Syst.,
2005, 20, (4), pp. 1818–1826

24 Bouffard, F., Galiana, F.D., Conejo, A.J.: ‘Market-clearing with
stochastic security – Part II: Case studies’, IEEE Trans. Power Syst.,
2005, 20, (4), pp. 1827–1835

25 Karaki, S.H., Chedid, R.B., Ramadan, R.: ‘Probabilistic performance
assessment of autonomous solar-wind energy conversion systems’,
IEEE Trans. Energy Convers., 1999, 14, (3), pp. 766–772

26 Wu, L., Shahidehpour, M., Li, T.: ‘Stochastic security-constrained unit
commitment’, IEEE Trans. Power Syst., 2007, 22, (2), pp. 800–811
234
& The Institution of Engineering and Technology 2013
27 Valenzuela, J., Mazumdar, M.: ‘Monte Carlo computation of power
generation production costs under operating constraints’, IEEE Trans.
Power Syst., 2001, 16, pp. 671–677
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