Optimisation of stand-alone hybrid CHP systems meeting electric and heating loads

Barun K. Das⁎, Yasir M. Al-Abdeli

School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia

A R T I C L E I N F O

Keywords:
PV
ICE
MGT
Electric load
Heating load
CHP

A B S T R A C T

Most research published into stand-alone energy systems, hybridised by supplementing PV with combustion-based prime movers, considers meeting an electric load demand. This paper goes further by studying the role of both electric and heating loads on the optimisation of hybridised stand-alone Combined Heating and Power (CHP) systems. The role of both the load following strategy in these systems (electric only FEL, versus electric and thermal FEL/FTL) as well as the relative magnitude of the heating load is analysed on system cost and performance. The conceptual CHP systems modelled also consider waste system derived from either multiple Internal Combustion Engines (ICEs) or Micro Gas Turbines (MGTs). The research uses MATLAB-based Genetic Algorithm (GA) optimisation throughout and features detailed hardware characteristics as well as temporally fluctuating meteorological (solar irradiance, temperature) and load (electric, heating) data. The outcomes are also tested in relation to CHP systems sized whilst optimising either single (Cost of Energy-COE, $/kW h) or multiple functions (COE and overall system efficiency, ηCHP,%).

Results indicate that whilst the power management strategy used in CHP systems (FEL or FEL/FTL) has minimal effects on the COE, it can appreciably affect other performance indicators. For example, in CHP systems sized based on FEL/FTL, whilst COE = ∼0.20 $/kW h the resulting ηCHP is 66% for PV/Bat/ICE and 44% for PV/Bat/MGT. This is compared to using a PMS of the FEL type which results in similar COE = ∼0.21 $/kW h but with ηCHP = 50% in PV/Bat/ICE systems and 34% in PV/Bat/MGT. In relation to overall environmental impact expressed though Life Cycle Emission-LCE (kg CO2-eq/yr) when heating demand is around 50% of the electric (Electric to Thermal Load Ratio = 60:40), a PMS of the FEL/FTL results in up to 30% lower LCE compared to those with FEL in some CHP systems.

1. Introduction

Energy usage is a key indicator of national development with the major sources being conventional fossil fuels such as coal, petroleum oil, and natural gas. However, limited reserves of fossil fuels and the environmental emissions from burning them have forced policy makers to deploy more alternative energy sources. Unlike conventional sources, renewables produce negligible operational GHG emissions and can theoretically be generated worldwide. Even though the application of renewable energy in electricity generation has increased significantly [1–3], due to its seasonal and temporal variations neither PV nor wind can reliably satisfy the load demand [4,5]. Therefore, many stand-alone systems integrate combustion based prime movers such as Internal Combustion Engines (ICEs) or Micro Gas Turbines (MGTs) alongside renewables. These hybridised energy systems also include energy storage media (batteries, hydrogen, capacitors) since renewable energy resources are inherently intermittent [6–13]. Thus, much reliance remains on conventional fossil fuel based power generation units. However, in relation to stand-alone hybrid systems, very few research studies are available in literature which examine their optimisation when waste heat recovery exists in the context of cogeneration or trigeneration [14–18].

A combustion powered stand-alone (completely off-grid) or distributed (occasional access to grid) cogeneration system, commonly known as Combined Heat and Power (CHP), involves the simultaneous production of heat and power from a single fuel source to meet an electric and heating load. In contrast, trigeneration additionally meets a cooling load along with the CHP application for a similar fuel usage. These systems which are commonly termed Combined Cooling, Heating, and Power (CCHP) provide improved power quality and reliability, save energy, reduce net emissions [19–24]. However, the vast majority of these systems do not integrate renewables [25–28]. As such, a conventional power plant transforms around 35–55% of the fuel’s energy into electric power and the rest is released to the environment as

⁎ Corresponding author at: School of Engineering, Edith Cowan University, 270 Joondalup Drive, WA 6027, Australia.

E-mail address: bdas@our.ecu.edu.au (B.K. Das).

http://dx.doi.org/10.1016/j.enconman.2017.09.078

Received 14 July 2017; Received in revised form 27 September 2017; Accepted 30 September 2017

0196-8904/ © 2017 Elsevier Ltd. All rights reserved.
waste heat. By introducing CHP, efficiency can exceed 90% [29,30] with 20–30% lesser fuel consumption. Additionally, approximately 50% fuel savings can be achieved for CCHP applications [31]. CHP systems can be operated on a topping cycle (electric energy first and recovered waste heat can then be used for thermal applications), bottoming cycle (thermal load is satisfied first and electric energy is then generated from surplus thermal energy), and combined cycle (produce additional electricity using recovered waste heat to run a steam turbine) [32]. Several different types of prime movers can be used in stand-alone CHP applications including ICEs, MGTs, and high temperature Fuel Cells (FCs). Incorporating a waste heat recovery system with these prime movers to meet local heating and cooling loads, can help achieve higher overall efficiency [33], with fewer environmental pollutants [34,35]. Caresana et al. [36] studied a 100 kW MGT system and found electrical efficiencies up to 29% when operating in power only made inICEs, MGTs, and high temperature Fuel Cells (FCs). Incorporating a waste heat recovery system with these prime movers to meet local heating and cooling loads, can help achieve higher overall efficiency [33], with fewer environmental pollutants [34,35]. Caresana et al. [36] studied a 100 kW MGT system and found electrical efficiencies up to 29% when operating in power only made inICEs, MGTs, and high temperature Fuel Cells (FCs). Incorporating a waste heat recovery system with these prime movers to meet local heating and cooling loads, can help achieve higher overall efficiency [33], with fewer environmental pollutants [34,35]. Caresana et al. [36] studied a 100 kW MGT system and found electrical efficiencies up to 29% when operating in power only made inICEs, MGTs, and high temperature Fuel Cells (FCs). Incorporating a waste heat recovery system with these prime movers to meet local heating and cooling loads, can help achieve higher overall efficiency [33], with fewer environmental pollutants [34,35]. Caresana et al. [36] studied a 100 kW MGT system and found electrical efficiencies up to 29% when operating in power only made inICEs, MGTs, and high temperature Fuel Cells (FCs). Incorporating a waste heat recovery system with these prime movers to meet local heating and cooling loads, can help achieve higher overall efficiency [33], with fewer environmental pollutants [34,35]. Caresana et al. [36] studied a 100 kW MGT system and found electrical efficiencies up to 29% when operating in power only made inICEs, MGTs, and high temperature Fuel Cells (FCs). Incorporating a waste heat recovery system with these prime movers to meet local heating and cooling loads, can help achieve higher overall efficiency [33], with fewer environmental pollutants [34,35]. Caresana et al. [36] studied a 100 kW MGT system and found electrical efficiencies up to 29% when operating in power only made inICEs, MGTs, and high temperature Fuel Cells (FCs). Incorporating a waste heat recovery system with these prime movers to meet local heating and cooling loads, can help achieve higher overall efficiency [33], with fewer environmental pollutants [34,35]. Caresana et al. [36] studied a 100 kW MGT system and found electrical efficiencies up to 29% when operating in power only made inICEs, MGTs, and high temperature Fuel Cells (FCs). Incorporating a waste heat recovery system with these prime movers to meet local heating and cooling loads, can help achieve higher overall efficiency [33], with fewer environmental pollutants [34,35]. Caresana et al. [36] studied a 100 kW MGT system and found electrical efficiencies up to 29% when operating in power only made inICEs, MGTs, and high temperature Fuel Cells (FCs). Incorporating a waste heat recovery system with these prime movers to meet local heating and cooling loads, can help achieve higher overall efficiency [33], with fewer environmental pollutants [34,35]. Caresana et al. [36] studied a 100 kW MGT system and found electrical efficiencies up to 29% when operating in power only made inICEs, MGTs, and high temperature Fuel Cells (FCs). Incorporating a waste heat recovery system with these prime movers to meet local heating and cooling loads, can help achieve higher overall efficiency [33], with fewer environmental pollutants [34,35]. Caresana et al. [36] studied a 100 kW MGT system and found electrical efficiencies up to 29% when operating in power only made inICEs, MGTs, and high temperature Fuel Cells (FCs). Incorporating a waste heat recovery system with these prime movers to meet local heating and cooling loads, can help achieve higher overall efficiency [33], with fewer environmental pollutants [34,35]. Caresana et al. [36] studied a 100 kW MGT system and found electrical efficiencies up to 29% when operating in power only made inICEs, MGTs, and high temperature Fuel Cells (FCs). Incorporating a waste heat recovery system with these prime movers to meet local heating and cooling loads, can help achieve higher overall efficiency [33], with fewer environmental pollutants [34,35]. Caresana et al. [36] studied a 100 kW MGT system and found electrical efficiencies up to 29% when operating in power only made inICEs, MGTs, and high temperature Fuel Cells (FCs). Incorporating a waste heat recovery system with these prime movers to meet local heating and cooling loads, can help achieve higher overall efficiency [33], with fewer environmental pollutants [34,35]. Caresana et al. [36] studied a 100 kW MGT system and found electrical efficiencies up to 29% when operating in power only made inICEs, MGTs, and high temperature Fuel Cells (FCs). Incorporating a waste heat recovery system with these prime movers to meet local heating and cooling loads, can help achieve higher overall efficiency [33], with fewer environmental pollutants [34,35].
electricity demand, with the waste heat meeting part or all of the thermal demand and the rest being met by an auxiliary boiler. In the later, the system is operated to meet all the thermal demand but the electrical power produced by the generating unit can satisfy part (or all) of the electrical load, deficits likely to be imported from the grid [52]. Integration of PV with CHP systems potentially reduces emissions and increase reliability [53–55]. In this context, Brandoni et al. [54] evaluated a residential hybrid (PV) micro-CHP system but used non-adaptive linear programming. However, unlike the present paper which considers a stand-alone system, their system was dependant on grid electricity for additional power requirement as well as using additional hardware such as a boiler and vapour compression chiller to meet additional heating and cooling not satisfied by the CHP. Their detailed PMS, a consideration which can strongly impact the outcomes of any system optimisation was not reported. Ebrahimi et al. [50] alternatively used a multi-criteria sizing function to optimise the size of prime movers for a another residential micro-CCHP system and investigated thermodynamical parameters (fuel energy saving ratio, exergetic efficiency), economic criteria (net present value, internal rate of return, and payback period), and environmental parameters (CO₂, CO and NOx reduction). They did not consider a dynamic load profile. In another study, Abdollahi et al. [40] performed multi-objective Genetic Algorithm (GA) optimisation for a residential CCHP system with exergetic efficiency, total levelized cost rate, and environmental cost rate as objective functions. The study considered a Micro Gas Turbine, Heat Recovery Steam Generator (HRSG), and an absorption chiller to meet cooling, heating, and electrical power. Their system was not stand-alone as it had an additional electric boiler and auxiliary chiller, both powered by a grid connection, for meeting peak demands. Moreover, their study only used a (coarse) monthly averaged load profile which also affects the operational characteristics and system efficiencies. Ahmadi et al. [42] reported a multi-objective optimisation of exergy efficiency, total cost, and CO₂ emission when modelling a 50 MW gas turbine supplying electric power and thermal energy in a CHP system in a paper mill. From the above it is evident that optimisation of stand-alone hybrid CHP systems based on ICE or MGT has not been received attention in the recent literature.

The main objectives of this paper are to (i) analyse the effects of various parameters on the optimal sizing of stand-alone hybridised CHP energy system meeting reliability constraints (both electric and thermal loads); (ii) highlight the impact of FEL or FEL/FTL Power Management Strategies on system sizing and operation; and (iii) compare between systems sized using single- vs multi-objective GA optimisation (minimising cost and maximising efficiency). To achieve this, the present study extends work done on CHP energy systems through simultaneously considering four aspects. Firstly, the system studied does not include auxiliary boilers to meet heating demand but solely relies on renewables and multiple units of supplementary prime movers (either ICE or MGT) to satisfy both $P_{elec}(t)$ (electric) and $P_{ther}(t)$ (thermal) loads. Whilst energy systems meeting an electric load (only) have been optimised when achieving a target load reliability constraint such as LPSP [56–59], considering LPSP into CHP systems which also meet a thermal demand has not been widely reported in the literature [51,60–65]. Additionally, this paper differs to others [37,54,66,67] in that the CHP systems analysed are stand-alone and not connected to a grid. Secondly, this research presents the intricate details of the Power Management Strategy used, which is not always done in earlier works. Moreover, the PMS deployed herein features varying relative magnitudes of $P_{elec}(t)$ and $P_{ther}(t)$ even when operating under FEL/FTL and FEL. In this context, it should be noted that despite PMS architectures affecting the performance of stand-alone energy systems [68], other CHP system studies [69,70] have not presented their PMS architectures (algorithms) to the same level of detail done in the present work. Thirdly, in this paper the outcomes of Genetic Algorithm system optimisation are compared between using single- (COE, $$/kWh$) or dual-objective functions (COE, $$/kWh$ and η_{CHP}%), whilst other studies using GA to analyse CHP systems [23,42–44] neither contrast between single- and multi-objectives (for the same hardware) nor do they feature Cost of Energy (COE) and overall efficiency (η_{CHP}). Fourthly, the simulations undertaken are applied to systems which are highly dynamic as they are based on 15 min temporal resolution, compared to other studies of CHP systems which have considered hourly [23,70], weekly or monthly temporal resolutions [40,50]. The GA Optimisation Toolbox within MATLAB R2015b is used throughout along with meteorological data and time series of both electrical and heating load profiles spanning a winter season (three months). This paper is organised as follows: Section 2 illustrates the methodology; Section 3 covers the results and discussion followed by the conclusions in Section 4 along with some recommendations for future research.

![Fig. 1. Schematic diagram of stand-alone hybrid CHP system.](image-url)
2. Methodology

The conceptual design architecture of the stand-alone hybrid cogeneration system that is considered is shown in Fig. 1. The key hardware components are PV modules, supplementary prime movers in the form of multiple similar units of Internal Combustion Engines (ICEs) or Micro Gas Turbines (MGTs), batteries (Batt), Heat exchangers (Hex) and inverters. The system considers meets three relative magnitudes of highly dynamic load profiles which have been processed so as to vary their relative magnitudes but retain their time fluctuating nature. The first is designated as 60:40 shown in Fig. 2(a). The mean for the electric load demand is 28.88 kW and the standard deviation is 29.53 kW; the mean for the thermal load is 17.95 kW and the standard deviation is 19.45 kW. The second load profile is designated as 40:60 shown in Fig. 2(b), where the thermal demand exceeds the electric. In this regard, the mean for the electric load demand is 17.95 kW and the standard deviation is 18.35 kW; the mean for the thermal load is 28.88 kW and the standard deviation is 29.53 kW. This research also considers a third load profile as 30:70 shown in Fig. 2(c). The mean for the electric load demand is 13.46 kW and the standard deviation is 13.76 kW; the mean for the thermal load is 33.69 kW and the standard deviation is 36.56 kW. Our earlier work [65] has featured a similar electric load profile but of a lower overall magnitude and modelled in the context of stand-alone systems that have no waste heat recovery or the need to meet a thermal demand as in the present study.

2.1. PV model and meteorological data

In order to determine the time resolved solar power generation, the performance characteristics curve of commercially available PV modules is used (Make: Heckert Solar, Model: HS-PL 135) [71]. These are mono-crystalline silicon PV modules of 0.8 m² and 135 W each, maximum power point voltage of 18 V, maximum power point current of 7.48 A, nominal open circuit voltage of 22.3 V, and a short circuit current of 7.95 A [71,72]. Dynamic profiles of solar irradiation data and ambient temperature, both shown in Fig. 3, are used in the simulations. These are for a remote location in Western Australia and obtained from the Australian Bureau of Meteorology (Broome: latitude: 17°56'S, longitude: 122°14'E) [73]. The total annual availability of solar irradiance is 2290 kW/m², with a peak of 1.14 kW/m². The performance of the PV modules at any time interval is dependent on the cell temperature, which itself a function of solar irradiation, ambient temperature, and wind speed, all of which have not been commonly integrated in many previous studies when deriving PV power [59,74,75]. In this study, a mathematical model based on a single diode equivalent circuit for PV modules, wherein the effects of ambient temperature and wind speed on the power output have been used [76,77]. The PV module parameters such as the light current, diode reverse saturation current, series resistance, shunt resistance, and the modified ideality factor are calculated to determine the solar current. These parameters can be obtained using the I-V characteristics provided by the manufacturer at reference conditions and other known hardware specific characteristics [71]. As such, this study also includes a detailed modelling of the renewable power generated using methods found in the Appendix D. In this study, Renewable Penetration (RP) is percentile which expresses usable PV energy converted to meet load but excludes dumped/excess energy relative to the load demand, made of electric Pelec(t) and thermal Pther(t) at any time step.

2.2. Battery modelling

In this study, the primary role of the battery bank is to supply the necessary energy if PV is unable to satisfy part of the load demand (electric and thermal) or if the minimum starting threshold (Psup, min) of supplementary prime movers is not reached to warrant their operation. As such, batteries are not used for seasonal (bulk) energy storage. Surplus energy generated by the PV modules is stored in the batteries and redrawn from the battery when required. After meeting the thermal demand Pther(t) in any time interval, excess energy from supplementary prime movers is also used to charge the battery bank. Lead acid batteries of 200 Ah nominal capacity, 12 V nominal voltage, and round-trip efficiency of 85% have been considered [78]. For the longevity of the battery bank, the battery should not be overcharged or over-discharged. The maximum charge (BSOC,max) is set to the nominal capacity of each battery and the minimum state of charge is represented by BSOC,min = 0.2BSOC,max for longer battery life [57]. In the simulations, the battery charge efficiency is taken equal to the round trip efficiency, whereas the discharge efficiency is 100% [57]. The battery charging and discharging equations are adopted from Appendix E. The battery bank is connected to the PV modules through a charge controller. The DC and AC buses are connected by the bi-directional inverter which converts DC voltage (from PV and battery sources) to AC voltage to supply AC loads, and alternatively AC voltage (from prime movers) to DC voltage to charge the battery bank. The conversion efficiency of the bio-directional inverter is considered as 95% [79].

2.3. Supplementary prime movers

The conceptual CHP systems considered in this study integrates one or more units of similar combustion-based prime movers to supplement the PV/Batt and meet the electric demand. These supplementary prime movers are either Internal Combustion Engines (30 kW ICE) or comparable rating Micro Gas Turbines (30 kW MGT). An exhaust heat recovery system is coupled with the ICE or MGT units so as to meet...
Fig. 2b. Electricity (40,058 kWh) and heating (64,462 kWh) load demand (40:60) of the selected area.

Fig. 2c. Electricity (30,050 kWh) and heating (74,470 kWh) load demand (30:70) of the selected area.

Fig. 3. Time resolved solar irradiation, ambient temperature, and wind speed over three months (July to September 2016).
thermal demand. The performance characteristics of commercially available ICEs and MGTs are chosen for system modelling [80,81]. The fuel energy ($F_{sup}(t)$) supplied to each supplementary prime mover corresponds to the output power (P_{sup}) of these prime movers in every time step based on their instantaneous thermal efficiency (ICE: 33–37% over 10 kW–30 kW; MGT: 20.6–26% over 10 kW–30 kW). It is assumed that all simulation parameters remain constant during each time interval. A minimum time step of 15 min has been considered in this study. The relatively small temporal resolution used allows for sensitivity to any higher frequency of prime mover start/stops as well as partial load operation, both of which can cause significant amounts of fuel consumption and long term maintenance problems [82,83]. In any time steps, the fuel consumption rate (kg/h) for the 30 kW ICE and the MGT are derived using the polynomial characteristics (Eqs. (1) and (2), respectively) [80,81,84], where $P_{ICE}(t)$ and $P_{MGT}(t)$ is the power generation from the ICE and MGT, respectively. The ambient temperature is also used to model MGT to calculate the output power. Fig. 4 represents the normalised performance characteristics curves for the 30 kW ICE and the MGT.

\begin{align}
C_{fuel\text{-}ICE\text{-}30}(t) &= 0.0001 \times P_{ICE}^2(t) + 0.2108 \times P_{ICE}(t) + 0.3551 \\
C_{fuel\text{-}MGT\text{-}30}(t) &= 0.0005 \times P_{MGT}^2(t) + 0.3132 \times P_{MGT}(t) + 0.7054
\end{align}

In this regard, consumed fuel energy (kW) can be determined using Eq. (3), where LHV is the lower heating value of the fuel (43,100 kJ/kg for diesel in the ICE and 43,250 kJ/kg for natural gas in the MGT).

\begin{equation}
F_{sup}(t) = \frac{C_{fuel\text{-}sup}(t) \times LHV}{3600}
\end{equation}

In this study, a Thermal to Electric Ratio (TER) is determined from Eq. (4), where Q_{th} is the recoverable heating energy. Systems have higher TER for MGT (typically 1.37–2.17) as compared to ICE (0.84–1.96) that implies comparatively more heat generation [84].

\begin{equation}
TER = \frac{Q_{th}(t)}{P_{sup}(t)}
\end{equation}

The recoverable heating energy ($Q_{th}(t)$) includes the combined waste heat of exhaust gas and jacket water for the ICE, but only waste heat of exhaust gas for MGT which is air cooled. In this paper, a TER value of 2.17 for the MGT and 1.96 for the ICE has been considered for calculating the potential to meet a thermal load in each time interval. Additionally, the Recovered Waste Heat to Power Generation (RWHP) is defined by the Eq. (5), where $P_{heat}(t)$ is the thermal load met by the recoverable heating energy ($Q_{th}(t)$) relative to the total (electric) power output ($P_{sup}(t)$) of the ICE or MGT over each time step.

\begin{equation}
RWHP = \frac{P_{heat}(t)}{P_{sup}(t)}
\end{equation}

The consequential total life cycle emissions (LCE) are the sum of the emissions by the system components over their lifetime (cradle to grave) and includes that from fuel consumption. This is expressed by Eq. (6) [4], where, β_i (kg CO2-eq/kW h) is the lifetime equivalent CO2 emissions of each hardware component (i) and E_i (kW h) is the amount of energy converted (or stored in batteries).

\begin{equation}
LCE = \sum_{i=1}^{N} \beta_i E_i
\end{equation}

2.4. Electric water heater

In this study, when the load deficit (P_{def}) is below the minimum starting threshold of supplementary prime movers, process heating using electric resistance heaters (powered by renewables and batteries) is used to supply the necessary heating load. The electric energy (kW h) requirements can be measured from the overall process heater efficiency ($\eta_{wh,sys}$) which is calculated by the Eq. (7) [85], where E_{elec} is the electrical energy input to the heater and E_{heat} is the total thermal energy. In this study, an efficiency, $\eta_{wh,sys} = 97\%$ has been considered for system modelling [86]. In the present study, the thermal load is composed purely of heating (no cooling as with CCHP).

\begin{equation}
\eta_{wh,sys} = \frac{E_{heat}(t)}{E_{elec}(t)}
\end{equation}

2.5. Load profile and reliability index

The Loss of Power Supply Probability (LPSP) is extensively used as a reliability index for sizing hybrid power generation when meeting electric loads [56–59]. However, the LPSP has not been considered while meeting thermal demand [51,60–65]. In this regard, the
simulations within this paper consider a combined electric and thermal load when deriving the optimum system. The target reliability is based on the LPSP (combined electrical and thermal) and is calculated using Eq. (8), whereby

$$LPS_P = \frac{\sum_{t=1}^{T} (LPS_{elec}(t) + LPS_{ther}(t))}{\sum_{t=1}^{T} (E_{elec}(t) + E_{ther}(t))}$$

where, $LPS_P = (LPS_{elec}(t) + LPS_{ther}(t))$

In this case, the LPS (t) can be calculated using the following equation (modified from the electric loads [59]):

$$LPS(t) = (P_e(t) - P_{sup}(t) - P_{heat}(t)) \times \Delta t - (P_{PV}(t) \times \Delta t + \frac{C_P}{\Delta t} \times (B_{SOC}(t-1) - B_{SOC, min})) \times n_{dav}$$

Any time interval, the total load $P_t(t)$ is designated to be the sum of the electrical load $P_{elec}(t)$ and the thermal load $P_{ther}(t)$. Fig. 2 represents the electric load and heating load demand for both 60:40, 40:60, and 30:70 load profiles. The maximum value of the LPSP constraint is taken as 0.01 ± 0.005, which is equivalent to a missed load of 1045 kW h combined electric and heating.

2.6. Power management strategy

In this study, the hybrid cogeneration system is assumed to meet a time varying domestic hot water supply and electric load as represented by a specific (combined) LPSP. A Power Management Strategy (PMS) is the switching algorithm which controls various components and is given in Fig. B.1 (Appendix B). This study includes a comparison between two types of PMS. The first is a strategy which sets operating decisions based on meeting the electric load and then using the consequent waste heat from supplementary prime movers to satisfy part/all the heating load (termed FEL). The second strategy is hybrid (termed FEL/FTL) and necessarily meets both the electric and heating loads.

Power generated from the PV module $PPV(t)$ is compared with $PL(t)$ to determine the net deficit $P_{Net}(t) = PPV(t) - PL(t)$ in each time interval. The deficit $P_{Net}(t)$ can either be met separately by renewables, requires augmentation through discharging battery storage at $P_b(t)$, or operating supplementary prime movers at $P_{sup}(t)$. Below the minimum starting threshold ($P_{sup, min}$) of supplementary prime movers which is set at 30% of nominal rated power [87,88], PV along with the battery bank would supply necessary energy requirements. Where renewables are greater than the load demand ($P_{Net}(t) > 0$) but batteries are not fully charged ($B_{SOC}(t) < B_{SOC,max}$), surplus PV power is delivered to charge...
the battery bank at $P_b(t)$. Once the battery state of charge reaches its maximum value ($B_{SOC_{max}}$), additional surplus power in this time interval is considered as excess energy $EE(t)$ and dumped. Alternatively, when power generation from PV is equal the load demand $P_{elec}(t) = 0$, the load is met in that time interval (Meet $PL(t)$). However, when the load demand is greater than renewables $P_{net}(t) < 0$, but sufficient storage capacity exists ($B_{SOC}(t) > B_{SOC, min}$) and total energy (PV + Batt) is equal or greater than the demand, the battery would supply the necessary load demand alongside the PV. As soon as battery state of charge reaches its minimum level ($B_{SOC}(t) = B_{SOC_{min}}$), the deficit load requirement is considered as unmet (Unmet $P_l(t)$).

If $P_{net}(t)$ exceeds the minimum starting threshold for the prime movers ($P_{sup,min} < P_{net}(t)$), the ICE or MGT are used to meet the demand ($P_l(t)$) when renewable energy along with battery bank is insufficient. At this stage, the prime movers are operated to meet all the electricity demand ($P_{elec}(t)$) and the thermal demand ($P_{ther}(t)$) using the waste heat recovery system. However, for a hybridised system such as that described in this study, when the heating load is much higher compared to the electrical demand, prime movers only can meet part of the thermal demand. In such time intervals, the PMS shifts from FEL to FEL/FTL where prime movers supplement power to first meet the relatively higher heating load requirements. In Fig. B1 (Appendix B), this strategy is shown using a dashed box, where the supplementary prime mover switches priority so as to meet the thermal demand $P_{ther}(t)$ instead of $P_{elec}(t)$. The PMS then checks whether it also meets the electric demand in that same time interval. In this regard, the deficit (combined) electric and heating load requirements are considered as Unmet $P_l(t)$. On the other hand, the additional electric energy generated by the ICE or MGT, after meeting the demand, is used to charge batteries until they reach their maximum state of charge ($B_{SOC_{max}}$), with the excess being dumped. In an FEL strategy, after first meeting electricity demand ($P_{elec}(t)$), the recovered waste is used to meet the thermal demand (full $P_{ther}(t)$ or part of it). The rest of the heating demand is met by the electric (resistance) water heater if there is enough state of charge ($B_{SOC_{min}}$) or it is considered as (Unmet $PL(t)$). In this study, for both cases (i.e. FEL/FTL and FEL) if the $P_{elec}(t)$ load is below the minimum starting threshold of the supplementary prime mover, the electric demand ($P_{elec}(t)$) is then met by the PV and battery bank, whereas the thermal demand ($P_{ther}(t)$) is met by the electric resistance heating operated using PV along with a battery bank.

2.7. GA optimisation, modelling parameters, and constraints

In this work, at first the system is optimised based on single-objective function (COE, $$/kW h$) using a MATLAB-based Genetic Algorithm (GA). The results obtained from single objective optimisation are then compared with the multi-objective optimisation technique using the same modelling parameters and constraints. The solution of a multi-objective optimisation problem, such as that in the present paper, may yield a set of non-dominant solutions known as Pareto optimal solutions. In arriving at these solutions, the simulations solve for a number of objective functions subjected to inequality constraints (LPSP in this study). The optimisation process search’s for optimum values that are to be maximised (or minimised) for the objective functions subject to bounds (limits). System sizing can be formulated as follows [89,90]:

$$
\text{Min/Max } F(x) = \left[f_1(x), f_2(x), \ldots, f_n(x) \right] \\
\text{Subject to } \begin{align*}
G_j(x) &\leq 0 & j = 1, 2, \ldots, J \\
H_k(x) &\leq 0 & k = 1, 2, \ldots, K
\end{align*}
$$

In this context, F is the expression for the objective function (either singular or multiple), x are the decision variables, G are the inequality constraints (e.g. LPSP), and H are the equality constraints (e.g. $B_{SOC_{min}}$, $P_{sup,min}$). In this study, multi-objective Genetic Algorithm optimisation problems have two objectives over the span of the period modelled (three months): the COE is to be minimised while the energy efficiency η_{CHP}, of combustion based supplementary prime movers is maximised. Alternatively, single objective optimisations are solely based on the COE, albeit with the resulting (consequential) η_{CHP} also reported in the results given. The sizing optimisation using multi-objective Genetic Algorithm is summarised in Fig. 5. A summary of other studies and parameters used in other single- and multi-objective optimisation of CHP systems is shown in Table 1. The technical and economical details of the hybridised system components are incorporated to the fitness function and the constraints (i.e. linear and non-linear constraints). These are defined as an input to the optimisation toolbox. Additionally, a set of parameters need to be specified before the optimisation process running such as population type and size, selection function, crossover function, mutation function, and stopping criteria. In this regard, the selection function is chosen as tournament with size 2, crossover function is the scattered, and mutation is the adaptive feasible as there is both linear and non-linear constraints. The stopping criteria is selected based on the specified number of generations (100 in this study) and the function tolerance is 10^{-6}. Using the given input parameters, multi-objective GA optimisation offers an iterative process until the

<table>
<thead>
<tr>
<th>Table 1</th>
<th>GA application for optimisation of CHP systems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>System components</td>
<td>No of objectives</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PV + MGT/ICE [39]</td>
<td>Single</td>
</tr>
<tr>
<td>Gas turbine + solar thermal plant [93]</td>
<td>Multi</td>
</tr>
<tr>
<td>ORC + HRSG [94]</td>
<td>Multi</td>
</tr>
<tr>
<td>ORC + HRSG + Absorption chiller + PEM [95]</td>
<td>Multi</td>
</tr>
<tr>
<td>Gas turbine + ORC + HRSG [96]</td>
<td>Multi</td>
</tr>
</tbody>
</table>
Table 3
Summary results of single (COE) and multi-objective (COE and ηCHP) optimisations of hybrid CHP systems (load profile 60:40, LPSP = 0.01 ± 0.005).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>PV/Batt/ICE</th>
<th>Multi-objective</th>
<th>PV/Batt/MGT</th>
<th>Multi-objective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single objective</td>
<td>Multi-objective</td>
<td>Single objective</td>
<td>Multi-objective</td>
</tr>
<tr>
<td></td>
<td>FEL/FTL</td>
<td>FEL</td>
<td>FEL</td>
<td>FEL</td>
</tr>
<tr>
<td>Number of solar panels, (N_{PV})</td>
<td>976</td>
<td>922</td>
<td>968</td>
<td>974</td>
</tr>
<tr>
<td>Number of lead acid batteries, (N_{batt})</td>
<td>42</td>
<td>50</td>
<td>25</td>
<td>44</td>
</tr>
<tr>
<td>Number of prime movers, (N_{sup})</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>LPSP (\text{comp}) (%)</td>
<td>0</td>
<td>0.0111</td>
<td>0</td>
<td>0.0077</td>
</tr>
<tr>
<td>PV energy generated (kW h)</td>
<td>62,573</td>
<td>59,111</td>
<td>62,060</td>
<td>64,444</td>
</tr>
<tr>
<td>Renewable penetration, (\text{RP}) (%)</td>
<td>60</td>
<td>57</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>ICE/MGT energy, (P_{\text{sup}}) (kW h)</td>
<td>25,724</td>
<td>33,453</td>
<td>27,602</td>
<td>32,265</td>
</tr>
<tr>
<td>RWHP (%)</td>
<td>76</td>
<td>35</td>
<td>77</td>
<td>35</td>
</tr>
<tr>
<td>Unmet energy (kW h)</td>
<td>0</td>
<td>1165</td>
<td>0</td>
<td>802</td>
</tr>
<tr>
<td>Fuel energy, (P_{\text{sup}}) (kW h)</td>
<td>69,139</td>
<td>90,824</td>
<td>74,203</td>
<td>87,588</td>
</tr>
<tr>
<td>Recovered waste heat to thermal demand ((P_{\text{heat}}/P_{\text{max}}), %)</td>
<td>49</td>
<td>29</td>
<td>53</td>
<td>28</td>
</tr>
</tbody>
</table>

The overall efficiency of supplementary prime mover-based cogeneration systems is determined from Eq. (12), where \(P_{\text{heat}}(t)\) is the heating load demand met using the waste heat recovered from the ICE or MGT:

\[
\eta_{\text{CHP}}(t) = \frac{P_{\text{max}}(t) + P_{\text{heat}}(t)}{P_{\text{sup}}(t)}
\]

In this study, the COE can be calculated using Eq. (13), where \(C_{s}\) is the total annualised energy system cost which includes: capital costs, Operation and Maintenance (O & M) costs, discount rate and fuel costs of system components. The discount rate for energy generation projects differs from 5% to 10% [92]. In this paper, a value of 10% is considered with a project lifetime of 25 years in accordance with maximum lifetime of PV module. Additionally, \(E_{o}\) (kW h) is the annual load to be met (electrical and thermal). Further details in this regard are given in [87].

\[
\text{COE} = \frac{C_{s}}{E_{o}}
\]

The data for cost and equivalent CO2 emissions attributed to the system components are presented in the Appendix A (Table A.1). Cost's presented represent only hardware and do not include civil works, mechanical, and electrical fabrication works as well as installation and labour costs. However, the cost associated with the heat recovery system does include with the capital cost of a 30 kW MGT. The cost for circulation pumps, interconnection piping, and control instrumentation are not considered in this study.

The study utilises MATLAB optimisation toolbox to implement the single- and multi-objective genetic algorithm. In this regard, the non-linear constrains (representing the calculation of LPSP) are written in one M-file, whilst another M-file representing the fitness function (using the PMS, and Eqs. (12) and (13)) calculates the all objective functions. The decision variables considered in this optimisation are the number of PV modules \(N_{PV}\), the number of lead acid batteries \(N_{batt}\) and the number of supplementary prime movers \(N_{sup}\). The simulations are also subjected to some constrains presented in Table 2 which are initially determined using trial and error to ensure the target LPSP (0.01 ± 0.005) is satisfied. Constraints \(B_{\text{O&M}}, P_{\text{sup}}\) and LPSP are formulated in the PMS, and other constrains related to bounds (number of components, \(N_{PV}, N_{batt}, N_{sup}\)) are directly entered into the optimisation toolbox. In achieving these simulations, a sensitivity analysis is also done into the effects of population size on the solutions in both single-(COE) and multi-objective (COE, \(\eta_{\text{CHP}}\)) optimisations. Fig. C1 (Appendix C) shows that with single objective optimisation, a population size of 10 is chosen as no appreciable improvement in the COE is achieved with further increases in the population size (up to 50), albeit at the expense of computational time. In the case of multi-objective optimisations, although a larger population size is needed, both the COE and the \(\eta_{\text{CHP}}\) stabilise for a population size of 200. Additionally, in single objective optimisations, constraint dependent mutations, a crossover fraction of 0.8 with scattered function, elite count 2, and 50 generations are used. On the other hand, a crossover fraction of 0.8 with 100 generations are used in the MATLAB multi-objective optimisation toolbox.

3. Results and discussion

The data which follows examines the effects of two types of PMS, the more commonly used type governing device switching based only on electric load demand (FEL), and a hybrid PMS which accommodates following both electric and thermal loads which are made up completely of heating in this study (FEL/FTL). The results will also discuss how changes to the relative proportions of electric to thermal load affect the optimisation of a hybrid CHP system over one season (3 months). Most of the analyses presented are based on single objective optimisation (COE, $/kW h) but the sensitivity of the outcomes to alternatively using a multi-objective function optimisation (COE, $/kW h; \eta_{\text{CHP}}, \%) is also given.

3.1. Type of load following strategy

The first set of results presented considers prime movers having \(P_{\text{sup,min}} = 30\%\) whereby the Electric to Thermal Load Ratio (ETLR) is 60:40. Summary data are presented in Table 3, with the first three rows giving the optimised size (i.e., the solution to the system’s sizing...
problem) and the remaining rows identifying the consequential performance.

From Fig. 6(a) it is evident that a PMS based on FEL/FTL or FEL has comparable COE whether optimised using single- or multi-objectives. For PV/Batt/MGT-based systems, PMS hybridisation (FEL/FTL) has an insignificant effect on the COE (avg. 0.19$/kW h) compared to FEL (avg. 0.20$/kW h). Similarly, for PV/Batt/ICE-based systems, PMS hybridisation only marginally gives better COE (avg. 0.21$/kW h) compared to FEL (avg. 0.23$/kW h). It is also evident from the results that the COE for the PV/Batt/MGT is generally (slightly) lower in contrast to PV/Batt/ICE systems. The COE for the PV/Batt/MGT is optimised as 0.27$/kW h in the literature [39], This is attributed to the higher RWHP with PV/Batt/MGT systems, the lower price of natural gas used to run MGT’s (3.3$/GJ) compared to diesel (0.91$/l).
However, the higher capital cost of each MGT unit (Appendix, Table A1) also means optimisations always select fewer MGT units than ICE units as shown in Tables 3 and 4.

In relation to the Overall CHP Efficiency (ηCHP,%) of the FEL/FTL PMS in both single- and multi-objective optimisations is better than the FEL PMS. Optimisations when applied to sized the ICE-based systems on FEL/FTL give ηCHP = 66% for both single- and multi-objective optimisations as shown in Fig. 6(b). However, in the case of ICE-based systems using an FEL, the overall efficiencies are much lower at ηCHP = 50% for both single- and multi-objective optimisation. In MGT-based systems running on a FEL/FTL PMS, ηCHP = 44% and ηCHP = 43% with single- and multi-objective optimisations. These also fall when alternatively operating on an FEL PMS for single- and multi-objective optimisations with ηCHP = 34%. From the above discussion, it is also evident that the ηCHP (%) for the ICE in the PV/Batt/ICE systems have higher ηCHP (%) than the PV/Batt/MGT system under the same operating conditions. The results also show that the ICE has higher thermal efficiency (33–37% over 10 kW–30 kW) as compared to the MGT (20.6–26% over 10 kW–30 kW). The output power for an MGT is also more susceptible to ambient temperature changes (rated power is up to 18 °C but decreases by a further 20% at 35 °C) which imposes an additional change across seasons.

Although in the FEL/FTL PMS there are no significant gains in COE or ηCHP between using single- and multi-objective optimisations, the latter produce slightly higher LCE (kgCO2-eq/yr) in both ICE and MGT-based systems. This is because in multi-objective optimisation achieving a higher ηCHP the Genetic Algorithm attempts to maximise utilisation of the recovered waste heat so as to meet the thermal demand, which attributed to relatively higher contributions from supplementary prime movers. Therefore, the number of PV modules and batteries are less in multi-objective solutions compared to the single objective optimisation as see in Table 3. However, hybridisation of the PMS using FEL/FTL in CHP systems not only to marginally improve the COE but more cleanly the ηCHP = 66% for both single- and multi-objective optimisations. The reason behind this is that the ICE has higher thermal efficiency (33–37% over 10 kW–30 kW) as compared to the MGT (20.6–26% over 10 kW–30 kW). The output power for an MGT is also more susceptible to ambient temperature changes (rated power is up to 18 °C but decreases by a further 20% at 35 °C) which imposes an additional change across seasons.

Table 4
Summary results of single objective (COE, $/kW h) optimisations of hybrid CHP systems operating at different ETLR (Pelec:Pther) for hybrid CHP systems (LPSP = 0.01 ± 0.005, Psup,min = 9 kW).

<table>
<thead>
<tr>
<th>System characteristics</th>
<th>PV/Batt/ICE (FEL/FTL)</th>
<th>PV/Batt/MGT (FEL/FTL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(60:40)</td>
<td>(40:60)</td>
</tr>
<tr>
<td>Number of solar panels, NpV</td>
<td>976</td>
<td>967</td>
</tr>
<tr>
<td>Number of lead acid batteries, Nbatt</td>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>Number of prime movers, Nsup</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>LPSP,comp</td>
<td>0.0009</td>
<td>0.0414</td>
</tr>
<tr>
<td>PV energy generated (kW)</td>
<td>62,573</td>
<td>61,355</td>
</tr>
<tr>
<td>Renewable penetration, RP (%)</td>
<td>60</td>
<td>59</td>
</tr>
<tr>
<td>ICE/MGT energy, Psup (kW)</td>
<td>25,724</td>
<td>27,398</td>
</tr>
<tr>
<td>RWHP (%)</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>Unmet energy (kW)</td>
<td>69,139</td>
<td>110,090</td>
</tr>
<tr>
<td>Fuel energy, Fsup (kW)</td>
<td>62,764</td>
<td>63,277</td>
</tr>
<tr>
<td>Recovered waste heat to thermal demand (Pheat/Pther, %)</td>
<td>49</td>
<td>53</td>
</tr>
</tbody>
</table>

From the above discussion, it is also evident that the PV/Batt/ICE-based system produces lower LCE (kgCO2-eq/yr) in both ICE and MGT-based systems. This is because of the higher lifetime (mm, which attributed to relatively higher contributions from supplementary prime movers. Therefore, the number of PV modules and batteries are less in multi-objective solutions compared to the single objective optimisation as see in Table 3. However, hybridisation of the PMS using FEL/FTL in CHP systems not only to marginally improve the COE but more cleanly the ηCHP = 66% for both single- and multi-objective optimisations. The reason behind this is that the ICE has higher thermal efficiency (33–37% over 10 kW–30 kW) as compared to the MGT (20.6–26% over 10 kW–30 kW). The output power for an MGT is also more susceptible to ambient temperature changes (rated power is up to 18 °C but decreases by a further 20% at 35 °C) which imposes an additional change across seasons.

In regard to the meeting thermal load demand using the recovered waste heat (Pheat), the multi-objective optimisation in the FEL/FTL mode is far higher than any other operating conditions as shown in Fig. 6(d). Table 3 shows that almost 50% of the thermal load demand is met by recovering waste heat from the supplementary prime movers while operating in the FEL/FTL mode for systems sized using single objective optimisation. This is even more (PV/Batt/ICE = 53%, and PV/Batt/MGT = 63%) while on the multi-objective optimisation for the same operating condition. On the other hand, only around 30% of the thermal demand is met by using the recovered heat when the system operating in the FEL mode regardless of optimisation technique (Table 3).

Despite this, the data also indicates the Renewable Penetration (RP) is comparable (57–60%) in both single- and multi-objective optimisations for the both FEL/FTL and FEL operating strategy except for PV/ Batt/MGT system (48%) in multi-objective FEL/FTL mode. The reason behind this in multi-objective optimisation, the recovered waste heat to meet the thermal demand is higher (63%) than the other mode of operation and hence the optimisation select the fewer number of PV modules and battery bank to meet the load demand. However, in the FEL mode the PMS allows only to meet the thermal demand which is produced as a consequence of meeting electric demand first by the supplementary prime movers and the rest is met by the electric (resistance) water heater powered by the renewably charged battery bank. For this reason the number of battery is higher in FEL strategy than the FEL/FTL mode for all optimisation techniques.

From the above discussion, it is obvious that although the PV/Batt/ICE and PV/Batt/MGT hybridised CHP systems meeting a Pelec (t) and Pbatt (t) have comparable COE, the overall CHP efficiency (ηCHP,%) of the ICE is greater that than of the MGT regardless of optimisation technique under all operating conditions. The results also show that the FEL/FTL operating mode for both systems have higher share of meeting thermal demand using recovered waste and better environmental benefits than the FEL mode. This is true for both single- and multi-objective optimisation techniques. The renewable penetration is comparable for both systems in single- and multi-objective optimisation.

3.2. Changes of Electric to Thermal Load Ratio (ETLR)

To analyse the effects of Electric to Thermal Load Ratio (ETLR) on the hybrid FEL/FTL strategy, Fig. 8 shows single objective optimisation data for ETLR = 60:40, 40:60, and 30:70. Results indicate that for PV/Batt/ICE systems, the effect of ETLR is very subtle on the COE (avg.

Energy Conversion and Management 153 (2017) 391–408
0.22\$/kW h) in the case of ICE-based CHP systems. However, with MGT-based CHP systems, increases to the relative significance of the thermal load (i.e., a smaller ETLR) generally lead to higher COE (0.20\$/kW h for ETLR = 60:40, and ∼0.30\$/kW h for both ETLR = 40:60 and ETLR = 30:70). This is attributed to the fact that at lower electric load demand (P_{elec}(t)), as occurs with smaller ETLR, there is more likelihood of electric load falling below the minimum starting threshold (P_{sup,min} ≈ 9 kW) of supplementary prime movers at any time step. The PMS then forces the optimisation algorithm to select more PV modules and a larger battery bank irrespective of thermal demand in that time step. This also has the potential to cause a higher number of supplementary prime movers once the PV modules and battery units reach

Fig. 7. Heating demand and recovered waste heat in (a) July, (b) August, and (c) September for PV/Batt/ICE in FEL/FTL PMS using multi-objective optimisation.
their upper bound in Table 2 to meet the specified LPSP (0.01 ± 0.005). The sizing data in Table 4 supports this. For the above reasons, at the greater thermal demand (e.g. ETLR = 30:70) the COE is higher. However, this is more apparent in PV/Batt/MGT systems as the capital unit cost of an MGT is higher than the ICE for the same power rating.

However, a more significant effect of ETLR appears in relation to the ηCHP (%) which increases significantly in the PV/Batt/ICE (from 66% at ETLR = 60:40 to 79% at ETLR = 30:70) when working on the FEL/FTL mode. This is because RWHP grows where there is greater thermal load than the electrical load. This change whilst still appreciable is less significant in the PV/Batt/MGT system (ηCHP = 44% at ETLR = 60:40 but 54% at ETLR = 30:70) which is attributed to the lower thermal efficiency of the MGT as compared to the ICE.

For hybrid systems operating with Psup,min = 9 kW in the FEL/FTL mode and meeting the same (combined) electrical and thermal demand, Fig. 8(c) shows that greater relative contributions of thermal load (from ETLR = 60:40 to ETLR = 30:70) lead to lower level of LCE. The LCE for the PV/Batt/ICE systems vary from 104,010 kgCO2-eq/yr to 87,005 kgCO2-eq/yr when the ETLR changes from 60:40 to 30:70. For the PV/
Appendix A. Data used for system design and optimisation

Table A1
Stand-alone hybridised CHP system components cost, lifetime and emissions aspects.

<table>
<thead>
<tr>
<th>Components</th>
<th>Description</th>
<th>Capital cost ($)</th>
<th>Replacement cost ($)</th>
<th>O & M cost ($/yr)</th>
<th>Life time (yr)</th>
<th>LCE (kg CO₂-eq/kW h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV module [4]</td>
<td>HS-PL135 (135 W)</td>
<td>310</td>
<td>310</td>
<td>0</td>
<td>25</td>
<td>0.05 [92]</td>
</tr>
<tr>
<td>ICE [97]</td>
<td>30 kW</td>
<td>10,500</td>
<td>10,500</td>
<td>260</td>
<td>10</td>
<td>0.88 [92]</td>
</tr>
<tr>
<td>MGT [98]</td>
<td>30 kW</td>
<td>75,300</td>
<td>75,300</td>
<td>1880</td>
<td>10</td>
<td>1.16 [99]</td>
</tr>
<tr>
<td>Inverter [4]</td>
<td>1 kW</td>
<td>419</td>
<td>419</td>
<td>11</td>
<td>10</td>
<td>0.03 [92]</td>
</tr>
<tr>
<td>Charge controller [100]</td>
<td>1 kW</td>
<td>800</td>
<td>750</td>
<td>20</td>
<td>15</td>
<td>0 [92]</td>
</tr>
<tr>
<td>Electric heater [101]</td>
<td>14.4 kW</td>
<td>1160</td>
<td>1160</td>
<td>28</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Heat exchanger [102]</td>
<td>Shell and tube, 8 m²</td>
<td>9800</td>
<td>9800</td>
<td>245</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Discount rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td>Fuel cost</td>
<td>Diesel fuel</td>
<td>0.91$/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natural gas</td>
<td>3.30$/GJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Batt/MGT systems, these vary from 144,900 kgCO₂-eq/yr to 109,380 kgCO₂-eq/yr when the ETLR changes from 60:40 to 30:70. This is because of the lower contribution of electric energy (Psup) from the supplementary prime movers with bigger relative thermal contribution as shown in Fig. 8(c). The results also indicate that the PV/Batt/MGT produces more LCE (kgCO₂-eq/yr) than the PV/Batt/ICE for all operating conditions because of the MGT has the higher lifetime equivalent CO₂ emissions (Appendix, Table A.1). Although both the PV/Batt/ICE and the PV/Batt/MGT operating on the FEL/FTL mode have comparable recovered waste heat from the supplementary prime movers, the ratio of this recovered waste heat (Pheat) to the total thermal demand (Ptherm) decreases significantly where there is larger thermal load as shown in Fig. 8(d).

In relation to renewable penetration, there are insignificant effects of changing the relative load profiles. From Table 4 it is evident that the reliability of meeting load demand (LPSP) decreases as ETLR changes from 60:40 to 30:70. This is due to more likelihood at smaller ETLR of electric loads falling below Psup,small in any time interval. This can lead to lower reliability (LPSP) since the GA optimisation algorithm cannot increase (PV, battery) units beyond the constraints set in Table 2.

4. Conclusions

Most research published to date on hybrid energy systems only considers following (meeting) an electric load. The present study has examined hybrid CHP systems and the effects of load following strategies (electric only versus electric and heating demand). Additionally, the relative magnitude of the thermal load has also been varied when determining the sizing optimisations so as to analyse the impact on COE, ηCHP, LCE, and other performance indicators. Genetic Algorithms based on single objective optimisations are used for system sizing with Loss of Power Supply Probability (LPSP) as the reliability index. The results are also analysed and compared to that of sizing CHP systems using multi-objective optimisations under the same constraints. Although the techno-economic feasibility and optimisation techniques presented in this study are based on a set of data and constraints and not intend to highlight the merits or limitations of certain types of prime movers (energy system components), the outcomes can be summarised as:

- COE: In CHP systems, the use of (solely) electric load following (PMS based on FEL) or both electric and thermal load following (FEL/FTL) has only marginal effects on the Cost of Energy (COE). Greater thermal loads relative to the total load to be met (i.e. a smaller ETLR) appear to have a stronger effect on the COE in MGT-based CHP systems.
- ηCHP: The most notable effect of PMS type in CHP systems appears in relation to the Overall CHP Efficiency (ηCHP). PMS hybridisation (FEL/FTL) results in better performance in both PV/Batt/ICE and PV/Batt/MGT systems, but particularly for ICE-based systems. A PMS based on FEL/FTL also allows for more thermal load to be satisfied using recovered waste heat (Pheat) when meeting the same load as a PMS based on FEL. In single objective optimisations, greater relative magnitudes of heating load demand also appear to lead to increased Overall CHP Efficiencies, with the degree of influence varying between ICE- and MGT-based CHP systems.
- LCE: Although using a PMS which follows both electric and thermal loads (FEL/FTL) in CHP systems does not carry with it significant financial incentives based on COE, it does however improve system Life Cycle Emissions (LCE) compared to an electric (only) load following strategy (FEL). The use of hybrid PMS in CHP systems (FEL/FTL) also leads to fewer LCE in system sized using single objective optimisations when the relative contributions of the thermal load increases (ETLR reduced).
- Single- versus multi-objective optimisations: One of the biggest merits from sizing CHP systems using multi-objectives (COE, ηCHP), compared to only using single objective (COE) optimisation, is to increase the fraction of total thermal demand which can be satisfied by recovered waste heat (Pheat/Ptherm).

Whilst this research has focused on a hybrid stand-alone Combined Power and Heating (CHP) system, further research is warranted into systems taking into consideration a cooling load as well as heating (CCHP systems) and the impact of variations in their hardware components on overall costs and performance indicators.

Acknowledgements

This work is supported by Australian Government Research Training Program Scholarship (RTP) from Edith Cowan University. The support of Western Power, a Western Australian State Government owned corporation, is appreciated in assisting access to electric load data for the simulations undertaken. Cummins South Pacific and Optimal Group Australia Pty Ltd are also gratefully acknowledged for their technical advice in relation to combustion prime mover operational characteristics. Finally, Dr. Ganesh Kothapalli (Associate Supervisor, ECU) is also thanked for his comments during the PhD project.
Appendix B. Power management strategy

Fig. B1. Power Management Strategy (PMS) for meeting electricity \(P_{elec}(t) \) and heating demand \(P_{ther}(t) \).

\[P_{t}(0)=P_{an}(0)+P_{me}(0) \]

\[P_{an}(0)=P_{c}(0)-P_{t}(0) \]

\[P_{c}(0)=0 \quad \text{No} \]

\[P_{c}(0)\neq 0 \quad \text{Yes} \]

\[P_{t}(0)=0 \quad \text{No} \]

\[P_{t}(0)\neq 0 \quad \text{Yes} \]

\[B_{SOC}(0)=B_{SOC,\text{max}} \quad \text{No} \]

\[P_{t}(0)+P_{an}(0)\geq P_{t}(0) \quad \text{Yes} \]

\[\text{Meet } P_{t}(t) \quad (P_{elec}(t) \text{ via electric heater}) \]

\[t=t+1 \]

\[EE(t) \]

\[\text{Charge } P_{d}(t) \]

\[t=t+1 \]

\[P_{elec}(t) \text{ met by supplementary prime movers} \]

\[P_{elec}(t) \text{ met by recovered waste heat from supplementary prime movers} \]

\[RWH_{elec}(t)\geq P_{elec}(t) \quad \text{Yes} \]

\[\text{Meet } P_{elec}(t) \]

\[t=t+1 \]

\[EE(t) \]

\[\text{Charge } P_{d}(t) \]

\[t=t+1 \]

\[P_{elec}(t)=P_{elec}(t) \quad \text{No} \]

\[\text{Calculate } TBR(t) \]

\[\text{Revert from FEL to FEL/FTL} \]

\[P_{elec}(t) \text{ met by PV and batteries} \]

\[B_{SOC}(t)\geq B_{SOC,\text{min}} \quad \text{No} \]

\[t=t+1 \]

\[EE(t) \]

\[\text{Charge } P_{d}(t) \]

\[t=t+1 \]
Appendix C. Sensitivity analysis of GA population size

Appendix D. PV modelling

The PV module’s current based on the single diode equivalent circuit is defined by the following equation [76,77], whereby $I_L(t)$ is the light current, I_o is the diode reverse saturation current, R_s is the series resistance, R_{sh} is the shunt resistance, and $a(t)$ is the modified ideality factor.

$$I_{PV}(t) = I_L(t) - I_o \left[\exp \left(\frac{V + I_{PV}(t)R_s(t)}{a(t)} \right) - 1 \right] - \frac{V + I_{PV}(t)R_s(t)}{R_{sh}}$$

(D1)

The light current $I_L(t)$ of PV module can be calculated using the Eq.(D2), where $S(t)$ is the solar irradiance, $T_{PV}(t)$ is the cell temperature, S_{ref} is the reference solar irradiation (1000 W/m2), I_{ref} is the short circuit current at the reference temperature (8.33 A), $a(t)$ is the temperature coefficient of short circuit current (0.0005/°C), and T_{ref} is the reference temperature (25° C) [71,72].

$$I_L(t) = \left(\frac{S(t)}{S_{ref}} \right) \left(I_{ref} + a(t)(T_{PV}(t) - T_{ref}) \right)$$

(D2)

Additionally shunt resistance R_{sh} is calculated by the Eq. (D3), where V_{mp} is the maximum power point voltage, I_{mp} is the maximum power point current, V_{oc} is the nominal open circuit voltage, and I_{sc} is the short circuit current.

$$R_{sh} = \frac{V_{mp}}{I_{mp}} - \frac{V_{oc} - V_{mp}}{I_{mp}}$$

(D3)

On the other hand, the cell temperature is determined by Eq. (D4) [103], where $T_{amb}(t)$ is the ambient temperature (°C), and $W(t)$ is the wind speed (m/s):

$$T_{PV}(t) = 0.943 \times T_{amb}(t) + 0.028 \times S(t) - 1.528 \times W(t) + 4.3$$

(D4)

Appendix E. Battery modelling

The state of charge of lead acid battery at any time step (t) is the summation of state of charge at the previous time interval (t−1) and the additional charge over the current time step (t) and is calculated by the Eq. (E1), whereas the battery state of charge during discharging can be calculated by Eq. (E2) [59,72], where C_b is the nominal capacity of the battery, $P_{PV}(t)$ is the power generation from PV module, $P_{sup}(t)$ is the power generation by supplementary prime movers, η_{inv} is the inverter efficiency, and Δt is the simulation time step (15 min).

$$B_{SOC}(t) = B_{SOC}(t-1) + \frac{(P_{PV}(t) + P_{sup}(t)) - P_{t}(t)}{C_b} \times \eta_{inv} \times \Delta t$$

(E1)
In this study, the battery charging efficiency (η_b) is taken to be equal to the round trip efficiency of the battery and discharging efficiency (η_d) is set to 1 [57], and the battery state of charge is subjected to the following constraints at any time step (Δt):

$$ B_{SOC,min} \leq B_{SOC}(t) \leq B_{SOC,max} $$

(E3)

