Three-Phase LLC Series Resonant DC/DC Converter Using SiC MOSFETs to Realize High-Voltage and High-Frequency Operation

Yusuke Nakakohara, Hirotaka Otake, Tristan M. Evans, Tomohiko Yoshida, Mamoru Tsuruya, and Ken Nakahara, Member, IEEE

Abstract—SiC MOSFETs are applied to constitute a three-phase, 5-kW LLC series resonant dc/dc converter with isolation transformers. A switching frequency of around 200 kHz for the transistors successfully reduces the volume of these isolation transformers, whereas insulated-gate bipolar transistors (IGBTs) are not capable of achieving such a high switching speed. The high-voltage tolerance of SiC MOSFETs, 1200 V, enables increasing the input voltage up to 600 V. High-voltage tolerance, on the other hand, is not compatible with low on-resistance for Si MOSFETs. A three-phase circuit topology is used to achieve up to 5 kW of power capacity for the converter and reduce per-phase current at the same time. Current-balancing transformers among these three phases effectively suppress a maximum peak current from arising in the circuit, a technique that miniaturizes the input and output switching (ZCS), zero-voltage switching (ZVS).

I. INTRODUCTION

POWER electronics generally seek highly efficient and compact power conversion systems, and the switching power supply has been playing a significant role for this purpose. In a switching power conversion system, the two loss factors of switching devices, namely switching loss and conduction loss, mainly restrict the maximum conversion efficiency and consequently how much the losses are reduced depends on what switching devices are used and how to drive them.

One of the most important techniques to minimize switching loss is the so-called soft switching. Zero-voltage-switching (ZVS) pulsedwidth modulation (PWM) converters typify power supply designs utilizing soft switching [1]. This circuit geometry efficiently reduces switching loss in a power circuit, but there still remain issues to be solved. For example, the reverse recovery of rectifier diodes generates voltage spikes, which often entail insufficient electromagnetic compatibility, the breakdown of dielectric substances in switching devices, and so on [2]. Many studies, of course, have already progressed to improve these disadvantages by appending auxiliary circuits [3]–[10], but these supplemental components make the whole system complicated, resulting in control difficulty and high production cost.

The LLC series resonant dc/dc converter (LLC dc/dc in short in the following paragraphs) is an attractive candidate circuit design [11]–[17] to bypass the aforementioned problems that ZVS PWM technology inevitably encounters. LLC dc/dc equipped with ZVS utilizes spontaneous resonance generation, which often entails insufficient electromagnetic compatibility, reverse recovery of rectifier diodes generates voltage spikes, and so on [2]. Many studies, of course, have already progressed to improve these disadvantages by appending auxiliary circuits [3]–[10], but these supplemental components make the whole system complicated, resulting in control difficulty and high production cost.

We also have to accomplish power conversion efficiency as high as possible to fabricate an excellent LLC dc/dc. Low-voltage and high-current transfer of electric power generally deteriorates power conversion efficiency because of Joule heat loss as an inevitable consequence of large currents. Hence, electricity transfer with high voltage and low current is preferable to circumvent Joule heat loss. For this purpose, adoption of a three-phase topology and high input voltage are proper measures to reach high conversion efficiency. A three-phase configuration lessens circuit current per phase to 1/3 of the total current in an equivalent single-phase circuit. Accordingly, input and output current ripples can be reduced with capacitors only, while ZVS PWM needs LC filters for decreasing ripples [20].

0278-0046 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/ redission requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
As for high input voltage, Si MOSFETs or GaN devices are not suitable as switching devices. These devices are superior to IGBTs in switching characteristics but possess a lower voltage tolerance than IGBTs. The tolerance of commercial Si MOSFETs and GaN devices is generally less than 650 V, and the versions of these devices that have breakdown-voltages (BV) over 650 V have on-resistance R_{ON} that exceeds several hundred milliohms [21]–[22]. In addition, the voltage tolerance of power supplies must be larger than its input voltage for safe operation of the power system. Consequently, an input voltage over 600 V does not meet the general voltage tolerance of Si MOSFETs or GaN devices. Thus, for these devices, a feasible transformer L_m, and resonant capacitor C_r, and these passive components are configured as a resonant tank. Q_1 and Q_2 are alternately operated with a nearly 50% duty cycle. Dead times during turn-off of both Q_1 and Q_2 were set so as to avoid short circuit of Q_1 and Q_2. Q_1 and Q_2 are softly switched during the dead times as described below. The timing chart of LLC dc/dc and its expected waveforms

circuit operates is described as follows.

Term 1 ($t_0 - t_1$): Term 1 begins with Q_2 turning off. V_{Q2} increases accompanying the resonance of $(L_m + L_r)$ and C_r during this term. This term lasts until V_{Q1} hits 0.

Term 2 ($t_1 - t_2$): Term 2 starts when V_{Q1} reaches 0. The reverse current begins flowing through the body diode of Q_1. ZVS is achieved if Q_1 turns on while this reverse current flows. The resonance of $(L_m + L_r)$ and C_r generates voltage in L_m so as for D_{o1} to be forwardly biased.

Term 3 ($t_2 - t_3$): $I_{D_{o1}}$ begins flowing to resonate between L_r and C_r. This resonance increases $I_{D_{o1}}$ and electric power supplies the load.

Term 4 ($t_3 - t_4$): Term 4 begins when I_{Q1} converts from a negative-to-positive value. During this term, $I_{D_{o1}}$ spontaneuously decreases due to $L_r - C_r$ resonance. This term lasts until $I_{D_{o1}}$ reaches 0.

Term 5 ($t_4 - t_5$): In this term, the resonance continues between $(L_m + L_r)$ and C_r. This term last until Q_1 turns off.

(t_6 - t_10): Terms 1–5 repeats with Q_1 and Q_2 exchanging their roles in the circuit.

II. OPERATION PRINCIPLE

The fundamental circuit of LLC dc/dc is shown in Fig. 1. The LLC circuit is basically composed of a half bridge which has two switches Q_1 and Q_2. These switches are connected with resonant inductance L_r, magnetizing inductance of isolation

III. DESIGN OF LLC CIRCUIT

A. Experimental Circuit

The research team opted for a three-phase configuration with a mutual phase shift of 120° to improve efficiency [29]–[31].
Transformers showing the exact same characteristics are practically impossible to prepare and thereby current per phase inevitably deviates, aggravating output current ripples. Accordingly several methods to reduce this problem are proposed in [30] and [31], e.g., but these countermeasures demand external controllers. In order to avoid additional controllers, we put the parallel-connected transformers adjacent to L_{mbi} as shown in Fig. 3. These additional transformers are referred to as balanced transformers below. Balanced transformers act so as to equalize current of each phase, leading to miniaturization of input and output capacitors as detailed in Section IV-B. In addition, the suppression of peak currents provides a way to circumvent reliability deterioration of output capacitors [32].

The mutual phase shift of 120° in three-phase operation means that the total current is always zero like Fig. 4, as a result of which L_{mbi} create no effective magnetic fluxes. Thus, L_{mbi} does not affect how L_{mij}, L_{ri}, and C_{ri} resonate.

The diode denoted by D_{r} in Fig. 3 returns the output power into the input, and thereby the input power source supplies only the electricity equivalent to the power loss of the system, leading to the precise measurement of power conversion efficiency [33].

In this configuration, V_{o} and V_{in} are almost identical and thus the gain defined as V_{o}/V_{in}, described in Section III-D, is approximately 1. For gain = 1, output power can be adjusted by switching frequency (f_{sw}) according to the gain equation of LLC that takes secondary leakage inductance and resistance components into account as mentioned in Section III-D. The authors adjusted f_{sw} of Q_{j} to obtain the expected output power.

B. Transformer Design

The following restraints should be simultaneously taken into account to design transformers that are as small as possible.

1. The transformers must always work below their saturation magnetic flux density.
2. The maximum magnetic flux density during operation must be reduced in order to minimize core losses P_{core}.
3. Primary winding number (N_{p}) and secondary winding number (N_{o}) and the actual area of the core (A_{c}) should be small in order to downsize the power supply unit.

Less magnetic flux density during operation is crucial for an appropriate transformer design because the density directly determines how large P_{core} is. The maximum magnetic flux density B_{m} at duty = 0.5 is generally expressed as [34]

$$B_{m} = \frac{V_{in}}{8f_{sw}N_{p}A_{c}}(T). \quad (1)$$

The equation elucidates that we have to increase at least one of f_{sw}, N_{p}, or A_{c} in order to reduce B_{m} under a constant V_{in}. Larger N_{o} or A_{c}, however, leads to larger transformers and thus these options conflicts with the demands to miniaturize power supplies. Therefore, the only measure we take is to increase f_{sw}, and SiC MOSFETs can meet this demand. The authors

![Fig. 3. Three-phase LLC dc/dc circuit. C_{in} and C_{o} denote input and output capacitance, respectively.](image)

![Fig. 4. Three-phase current-balancing topology.](image)
Table I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage ((V_{in}))</td>
<td>600 V</td>
</tr>
<tr>
<td>Input capacitances (C_{in}, C_{ac2})</td>
<td>2200 μF</td>
</tr>
<tr>
<td>Switches ((Q_j, j = 1 \ldots 6))</td>
<td></td>
</tr>
<tr>
<td>Magnetic inductances ((L_{m,j}, j = 1 \ldots 6))</td>
<td>55.6, 55.1, 64.3, 51.8, 56.2, and 57.5 μH</td>
</tr>
<tr>
<td>Resonant inductances ((L_{r}, i = 1 \ldots 3))</td>
<td>12.0, 11.6, and 11.6 μH</td>
</tr>
<tr>
<td>Magnetic inductances of the balanced transformer ((L_{m,bal}, i = 1 \ldots 3))</td>
<td>20.7, 21.0, and 19.7 μH</td>
</tr>
<tr>
<td>Resonant capacitances (C_{r}, i = 1 \ldots 3)</td>
<td>60 nF</td>
</tr>
<tr>
<td>Secondary diodes ((D_{op}, j = 1 \ldots 6))</td>
<td>SiC SBD (SCS210KG) Rohm ((BV = 1200 \ V))</td>
</tr>
<tr>
<td>Regenerating diode ((D_o))</td>
<td>SiC SBD (SCS210KG) Rohm ((BV = 1200 \ V))</td>
</tr>
<tr>
<td>Output capacitances ((C_{o1}, C_{o2}))</td>
<td>270 μF</td>
</tr>
<tr>
<td>Output Voltage ((V_o))</td>
<td>600 V</td>
</tr>
</tbody>
</table>

Fig. 5. Picture of the prototype 5-kW three-phase LLC series resonant dc/dc measuring 49-cm wide and 29-cm long.

Si IGBTs have been shown to operate at up to 50 kHz [37]. A \(f_{sw} \) of 50 kHz would result in transformers with \(A_c \) and \(V_c \) of 3.44 and 35.1 cm\(^3\), respectively, when using the same core material (PC40EE57/47-Z) \(N_p \) and \(N_o \) as presented above. In this case, 200-kHz switching frequency reduces \(V_c \) by 82%.

C. System Configuration

All the circuit constants used in our LLC dc/dc are listed in Table I. Fig. 5 presents the picture of the LLC dc/dc circuit board used in the experiments implemented here and two rulers are added in the figure providing a guide for the size of the LLC dc/dc.

The following discussions are based on the circuit in Fig. 3.

D. Gain Analysis Model of the LLC

Fig. 6 exhibits a single-phase circuit equivalent to the three-phase LLC dc/dc in Fig. 3, and here \(R_{Load-1} \) is the load resistance in the equivalent single-phase circuit.

The LLC circuit utilizes the resonance among \(L_r \), \(L_m \), and \(C_r \), and consequently the current flowing in the circuit has a nearly sinusoidal waveform, which validates the use of first harmonic approximation (FHA) as a measure to analyze how the circuit behaves [38]. The simplified circuit is first considered equipped with a simple ac input shown in Fig. 7 in order to obtain the mathematical expression of the total load corresponding to \(R_{Load-1} \) in FHA, \(R_{ac-1} \). In FHA, \(V_{acin} \) and \(V_{aco} \) can be expressed as

\[
V_{acin} = \frac{2}{\pi} V_{in} \sin(2\pi f_{sw} t)
\]
\[
V_{aco} = \frac{2}{\pi} V_o \sin(2\pi f_{sw} t).
\]

In this case, the output power \(P_{out-1} \) can be expressed as

\[
P_{out-1} = \frac{V_o^2}{R_{Load-1}} = \frac{V_{aco, rms}^2}{R_{ac-1}} = \left(\frac{2V_o}{\sqrt{2}R_{ac-1}} \right)^2
\]

where the subscription of “rms” denotes effective value. Thus, \(R_{ac-1} \) is equal to

\[
R_{ac-1} = \frac{2}{\pi^2} R_{Load-1}.
\]

D. Gain Analysis Model of the LLC

The circuit in Fig. 7, however, is too simple to analyze the LLC dc–dc circuit. \(L_r \) should be divided into primary leakage inductance \(L_{ikp} \) and secondary leakage inductance \(L_{iks} \) to improve the accuracy of circuit simulation [39]. In addition, resistive components should be taken into account for improving the quality of analysis; the components include \(R_{on} \) of transistors, forward resistance of diodes (\(R_D \)), and wire resistance \(R_{w1} \) and \(R_{w2} \) of primary and secondary transformers. Thereby, we modify the circuit model in [39], and analyze the LLC circuit performance based on the circuit shown in Fig. 8, where \(R_P = R_{on} + R_{w1} \), and \(R_S = R_D + R_{w2} \).
Assuming that $L_{\text{lkp}} = L_{\text{iks}}$, the gain ($M_{-1}$) is calculated by

$$M_{-1} = \frac{V_o}{V_{in}} = \frac{V_{\text{aco},\text{rms}}}{V_{\text{cin},\text{rms}}} = \frac{|L_m R_{\text{ac}-1}|}{jX_{-1} + Y_{-1}}$$ \hspace{1cm} (3)$$

where

$$X_{-1} = 2\pi f_{sw} L_{\text{lkp}} (L_p + L_m) - \frac{1}{2\pi f_{sw}} \left(R_P R_{A-1} + \frac{L_p}{C_r} \right)$$

$$Y_{-1} = L_p (R_p + R_{A-1}) - \frac{1}{4(\pi f_{sw})^2} \frac{R_{A-3}}{C_r}$$

$$R_{A-1} = R_S + R_{\text{ac}-1}, \quad L_p = L_m + L_{\text{lkp}}$$

The three-phase LLC resonant converter corresponds to three parallel connected circuits of Fig. 8, and the load resistance of the three-phase LLC $R_{\text{ac}-3}$ is equal to 1/3 of $R_{\text{ac}-1}$. Thus, (3) can be used to express the gain for the three-phase LLC M_{-1} as

$$M_{-1} = \frac{1}{2\pi \sqrt{L_{\text{lkp}} + L_{\text{iks}}} C_r}$$ \hspace{1cm} (5)$$

The curves in Fig. 9(a) are based on the model in [39]; the ones in Fig. 9(b) are obtained by use of (4) and each resistance parameter corresponding to its output condition (e.g., $R_p = 0.26 \Omega$, $R_s = 1.22 \Omega$ at 5-kW output power). These two part figures also include the experimental results as denoted by solid black circles, which results come from the f_{sw}-output power correlation presented in Fig. 9(c) as denoted by the solid blue line and the open blue circle markers.

As clearly shown in Fig. 9(a) and (b), our analytical model provides an improvement on the model in [39] and coincides closely with the experimental results. Therefore, these of resistive components in LLC resonant tank. This also indicates that the resistive components play an important role to determine the gain $- f_{sw}$ characteristics of LLC.

Fig. 9(c) also includes power conversion efficiency at various output powers of our LLC dc/dc. The power conversion efficiency was estimated by the use of the amount of energy the input power source supplied during operation, because the amount is regarded as the power loss of the LLC as described in Section III-A. The best measured power efficiency of our LLC dc/dc achieves 97.6% at 5-kW. Applied f_{sw} can reach around 200 kHz owing to the high speed switching characteristic of SiC MOSFETs. The output power varied with f_{sw} through the mechanism as explained in this section.

IV. EXPERIMENTAL RESULTS

A. Switching Waveforms

Fig. 10 shows the measured waveforms of drain-source voltage V_{ds} and drain current I_d of SiC MOSFET Q_1. The use of SiC MOSFETs enables high f_{sw} (200 kHz) driving and high V_{in} (600 V). This figure also indicates very small crossing area of V_{ds} and I_d curves, meaning that soft switching works well in this circuit configuration.

B. Effects of Balanced Transformer Circuit

How the balanced transformers worked is displayed in Fig. 11(a) and (b). The waveforms in this figure represent each
current per phase flowing through a serially connected pair of secondary diodes in each single-phase secondary circuit. The LLC circuit without balanced transformers fails in equalizing current per phase, and the sum of all the individual phase currents has a maximum peak-to-peak value (ΔI_{ripple}) is 6.45 A as shown in Fig. 11(a). The LLC circuit with balanced transformers, the whole design of which displays in Fig. 3, decreases the ΔI_{ripple} to about 4.31 A.

C. Loss Analysis

The pie chart of Fig. 12 shows the loss breakdown of the SiC-based LLC dc–dc at 5-kW output power. The effective value of current through the transistors was 4.5 A. The SiC MOSFETs used here has an R_{ON} of 80 mΩ and thus, the total conduction loss of the transistors was $(4.5 \text{ A})^2 \times 80 \text{ mΩ} \times 6 \text{ pcs} = 9.7 \text{ W}$. For the secondary diodes, the average absolute current was observed to be 2.94 A. The forward voltage at 2.94 A was 1.1 V, and accordingly the total loss at the secondary diodes was $2.94 \text{ A} \times 1.1 \text{ V} \times 6 \text{ pcs} = 19.4 \text{ W}$. The total resistance of the transformer winding copper used here was 1.66 Ω at 183 kHz. The effective value of the current through the transformers is 6.08 A, and thus the copper loss of the transformers was $(6.08 \text{ A})^2 \times 1.66 \text{ Ω} = 61.4 \text{ W}$. Another major loss factor in the transformers, core loss, was calculated as follows. Equation (1) provides a B_m of 0.157 T by using $A_e = 0.814 \text{ cm}^3$, $N_p = 16 \text{ turn}$, $f_{sw} = 182.9 \text{ kHz}$, and an input voltage for each transformer of 300 V. This B_m generates a core loss of 22.2 W according to the B_m-core loss correlation in the datasheet of PC40EER28L-Z.

A difference between the total loss and the sum of these aforementioned losses still remains and, accordingly, the difference is denoted by “others” in Fig. 12. These losses mainly comprise the switching loss of the SiC MOSFETs, and the core loss in the balanced transformers.
This paper has reported on a three-phase 5-kW LLC dc/dc converter comprising SiC MOSFETs with 1200-V BV as switching devices to prove the advantages of SiC devices. Around 200 kHz switching, a frequency SiC MOSFETs can reach but Si IGBTs cannot, successfully reduces the volume of the isolation transformers. The high BV of SiC MOSFETs, enables a V_{in} up to 600 V and also has the potential to raise V_{in} over 800 V. Thus we will experiment with 800 V input LLC dc/dc equipped SiC MOSFETs to verify the potential in the next phase of the research. A three-phase configuration allows decreased currents, as a result of which the LLC dc/dc maintains good enough power conversion efficiency avoiding the rise of switching loss caused by f_{sw}. The additional transformers to balance three-phase currents supress a peak current in the circuit, minimizing C_{in} and C_o to absorb current ripples in the circuit.

REFERENCES

Yusuke Nakakohara was born in Fukuoka, Japan, in 1987. He received the B.S. and M.S. degrees in material science and engineering from Kyushu University, Fukuoka, Japan, in 2010 and 2012, respectively. He is with the Power Application Development Division, Rohm Company Ltd., Kyoto, Japan. His research interests include power conversion circuits.

Hirotaka Otake was born in Chiba, Japan, in 1981. He received the B.Eng. and M.Eng. degrees in applied physics from Waseda University, Tokyo, Japan, in 2004 and 2006.

Tomohiko Yoshida was born in Tokyo, Japan, in 1963. He graduated in electrical engineering from Tokyo Denki University Junior College, Tokyo, Japan, in 1985. He is with the Technology Division, Power Assist Technology Company Ltd., Saitama, Japan. His research interests include power conversion circuits.

Mamoru Tsuruya was born in Saitama, Japan, in 1947. He received the B.S degree in electrical engineering from Kogakuin University, Tokyo, Japan, in 1974. He is the Chief Technology Officer of the Power Assist Technology Company Ltd., Saitama, Japan. His research interests include power conversion circuits.

Ken Nakahara (M'12) was born in Hyogo, Japan, in 1972. He received the B.S degree in physics from Kyoto University, Kyoto, Japan, in 1995, and the Ph.D. degree in chemistry from Tohoku University, Sendai, Japan, in 2010. He is the Division Manager of the Power

Tristan M. Evans received the B.S. and M.S. degrees in electrical engineering from the University of Arkansas, Fayetteville, AR, USA, in 2009 and 2011, respectively. He is currently a Research Engineer with the R&D Division, Rohm Company Ltd., Kyoto, Japan. His research interests include power electronics packaging and applications of SiC power devices.