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a b s t r a c t

Renewable energy (RE) sources can be incorporated in design of combined heat and power (CHP) sys-
tems, so that the advantages of zero environmental emissions as well as higher energy efficiencies are
realized simultaneously. Further, due to inability to dispatch renewable energy sources, the integration of
thermal and electricity storages is necessary to enhance the performance of RE-CHP systems in terms of
overall cost and reliability to meet thermal and electrical loads. In addition, the utilization of excess
electrical energy for conversion to heat could be critical to meeting thermal load and, hence, maintaining
the autonomous operation of RE-CHP systems. The goal of this study is to develop a simulation model for
optimization of an autonomous RE-CHP system, where thermal and electrical loads are met utilizing
photovoltaic (PV)-thermal (PVT) panel, wind turbines (WTs), thermal energy storage, electrical energy
storage, and electric heater (EH). For optimization, a newly developed evolutionary particle swarm
optimization (E-PSO) algorithm is introduced and validated. It is shown that, as an autonomous RE-CHP
system, the combination of PVT, WT, storages, and EH can effectively meet thermal and electrical loads
with an acceptable reliability. Moreover, the results confirm the superiority of the proposed E-PSO al-
gorithm among other methods.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Renewable energy (RE) sources could be integrated to serve
autonomous combined heat and power (RE-CHP) systems in remote
areas, where the distribution system costs for non-renewable en-
ergy carriers are not favorable [1]. However, due to intermittencies
in RE sources, reliability concerns prompt for utilization of energy
storages in conjunction with RE-CHP systems to meet thermal and
electrical time varying loads simultaneously, which in turn neces-
sitates the employment of an energymanagement strategy (EMS) to
ensure that proper energy distribution is achieved.

To identify the contribution of this study, the review of literature
with a focus on various aspects of utilization of RE and fuel based
sources for meeting thermal and/or electrical loads is summarized
in Table 1. In the literature, there are numerous studies that have
been conducted for autonomous application of RE sources with
.

storage capabilities for generation of electricity alone [2e11]. There
are also studies that have considered application of RE and non-RE
sources to simultaneously meet thermal and electrical loads as in
CHP systems, however, the optimal design of the examined systems
in those studies are based on non-autonomous operationmode and
in parallel with the grid [12e19].

Sharafi et al. [20] proposed a multi-objective approach to
determine the optimal size of a hybrid renewable energy system for
a grid-tied residential energy system, including PV, WT, heat pump,
biomass boiler, solar thermal system, and heat storage tank, where it
is shown that RE source can play a considerable role in a CHP system.
Because photovoltaic-thermal (PVT) panel generates thermal and
electrical energy simultaneously, and, in comparison with PV cell
and solar thermal system, has higher total efficiency than the sum of
the efficiencies of PV cell and solar thermal system, PVT panel can be
considered as an effective alternative to supplying thermal and
electrical loads on individual basis [21e23]. Furthermore, it has been
shown that utilization of thermal energy enhances PVT panel elec-
trical energy production [24]. In a parametric study, the perfor-
mance of a concentrating PVT CHP system with an attached heat
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Table 1
Summary of studies on utilization of RE and fuel based sources for autonomous and non-autonomous modes of operation in the literature.

Ref. RE Source Fuel Based Sources Operation Mode CHP Storage Auxiliary
Heat

Reliability
Analysis

Optimization

PVT PV WT FC MT Diesel
Generator

TES EES

[2] e ✓ ✓ e e e Autonomous e e ✓ e ✓ Iterative
Approach

[3] e ✓ ✓ e e ✓ Autonomous e e ✓ e ✓ PSO
[4] e ✓ ✓ ✓ e e Autonomous e e ✓ e ✓ Iterative

Approach
[5] e ✓ ✓ e e ✓ Autonomous e e ✓ e ✓ HSA
[6] e ✓ ✓ ✓ e e Autonomous e e ✓ e ✓ GA
[7] e ✓ ✓ ✓ e e Autonomous e e ✓ e ✓ PSO
[8] e ✓ ✓ e e ✓ Autonomous e e ✓ e e Iterative

Approach
[9] e ✓ ✓ e e e Autonomous e e ✓ e ✓ PSO
[10] e ✓ ✓ e e e Autonomous e e ✓ e ✓ PSO
[11] e ✓ ✓ e e e Autonomous e e ✓ e ✓ CS
[12] e e e e ✓ ✓ Non-Autonomous ✓ ✓ NG boiler e PSO
[13] e e e ✓ e ✓ Non-Autonomous ✓ e ✓ NG e ICA
[14] e e e ✓ e ✓ Non-Autonomous ✓ e ✓ NG e HSS
[15] e e e e e ✓ Non-Autonomous ✓ ✓ e NG boiler e MINP
[16] e ✓ ✓ e ✓ e Non-Autonomous ✓ ✓ e NG boiler e SA
[17] e ✓ e ✓ e ✓ Non-Autonomous ✓ ✓ e NG boiler e LP
[18] e ✓ ✓ ✓ ✓ e Non-Autonomous ✓ e ✓ NG boiler e QP and PSO
[19] e ✓ ✓ ✓ ✓ e Non-Autonomous ✓ e ✓ Biomass boiler ✓ SQP
[20] e ✓ ✓ e e e Non-Autonomous ✓ e ✓ Biomass boilers,

Electric Pump
e PSO

[23] ✓ e e e e e Non-Autonomous ✓ ✓ e NG boiler e LMM
[26] ✓ e e e e e Autonomous ✓ ✓ ✓ e e GA
This Study ✓ ✓ ✓ N/

A
N/
A

N/A Autonomous ✓ ✓ ✓ EH ✓ Proposed E-PSO

*N/A: Fuel based sources are assumed not available in this study.
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storage tank as a thermal energy storage (TES) is investigated and it
is found that the efficiency of the concentrating PVT panel decreases
when the inlet temperature is increased [25]. For an autonomous
RE-CHP application, a feasibility study for utilization of an autono-
mous PVT CHP system for a residential application is conducted by
Gholami et al. [26], where it is shown that utilization of TES and
electrical energy storage (EES) is crucial for meeting both thermal
and electrical loads and, the capacities of TES and EES greatly affect
the reliability and economy of the autonomous system. Further, it is
suggested that the auxiliary sources such as connection to the grid
and use of natural gas (NG) boiler are necessary for backup. For
optimization, genetic algorithm (GA) is used in that study, however,
its performance has not been evaluated and compared with other
widespread optimization algorithms.

1.1. Contributions

Fromthe reviewof literature, it is determined that the realization
of higher operational efficiency from CHP systems is examined in
studies that are limited to the use of fuel-based technologies, such as
diesel generator, microturbine (MT), fuel cell (FC) and boilers for
non-autonomous applications. For autonomous applications, how-
ever, fuel based technologies cannot be utilized as remote areas are
rarely provided with NG fuel piping prior to electrification and, it is
therefore concluded that autonomous RE-CHP systems for building
applications require further investigation fromviewpoint of optimal
design, economic feasibility, and environmental emissions.

It is anticipated that the combination of PVT andWT could serve
as complementary sources for autonomous operation of RE-CHP
system and, the integration of the noted RE sources with TES and
EES is expected to enhance the performance of RE-CHP system in
terms of overall cost and reliability to meet loads. In addition, it is
hypothesized that inclusion of an electric heater (EH) could provide
for the necessity of meeting thermal loads by converting excess
electrical energy to heat. The goal of this study is to develop a
simulation model for optimization of an autonomous RE-CHP sys-
tem, where thermal and electrical loads are met utilizing a PVT
panel, WTs, TES, EES and EH. For integrated operation of RE-CHP
system, an energy management system (EMS) for managing en-
ergy distribution is used so that the total capital and operational and
maintenance costs of the autonomous RE-CHP system is minimized.
For optimization, a newly developed evolutionary particle swarm
optimization (E-PSO) algorithm is introduced and validated.

The remainder of this study is organized as follows. In Section 2,
the autonomous RE-CHP system modeling is discussed. Problem
formulation and E-PSO optimization algorithm are presented in
Sections 3 and 4, respectively. Parametric values used for simula-
tion are given in Section 5. Results and discussions are explained in
Section 6 and, Section 7 draws the concluding remarks along with
recommended future work. It is noted that all variables are defined
in the nomenclature.

2. RE-CHP system modeling

The examined autonomous RE-CHP system is shown in Fig. 1,
where PVT panel is employed to generate thermal and electrical en-
ergyandWTsareused to complementgenerationofelectricitybyPVT
panel. Asdirected byEMS, energy storagesmayoperate in chargingor
dischargingmodes to fulfill thermalandelectrical loads requirements
and, EH is intended to serve as anauxiliary heat source. Based on such
configuration, the thermal load can be supplied by PVT, TES or EH,
where EHutilizes electrical energy fromPVT,WTand/or EES.Also, the
electrical load can be supplied by the PVT, WT, or EES.

2.1. Photovoltaic-thermal panel

During day time and as electricity is being generated, the solar
irradiation causes temperature increase in PV cells, which has an
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Fig. 1. Autonomous RE-CHP system configuration proposed in this study.
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adverse effect on PV electrical efficiency. Appropriate circulation of
a working fluid in the underside heat exchanger of PVT panel
provides for extracting heat and therefore keeping the electrical
generation efficiency at satisfactory levels. The extracted thermal
energy maybe used to meet thermal load partially or in full and the
excess may also be directed to TES by EMS.

The thermal efficiency of a PVT panel can be calculated as [26].

htth ¼ FR

2
4taPVT �

Uloss

�
Ttf � Tta

�
Gt

3
5 (1)

and the useful thermal energy generated by PVT panel is given by
Ref. [26].

ThtPVT ¼ APVFR
h
taPVT$G

t � Uloss

�
Ttf � Tta

�i
(2)

where it is assumed that the PVT panel is completely covered with
PV cells. The electrical efficiency of the PVT panel depends on the
EtWT ¼

8>>>>>><
>>>>>>:

0 Vt
w <Vw;cut�injj Vt

w >Vw;cut�out

Vt3
w

 
EWT;r

V3
w;r � V3

w;cut�in

!
� EWT ;r

 
V3
w;cut�in

V3
w;r � V3

w;cut�in

!
Vw;cut�in <

EWT;r Vw;r < Vt
w < Vw;cut�out
fluid working temperature. The electrical efficiency of PVT panel
can be expressed as [26].

htE ¼ href

�
1� bref

�
TtPM � NOCT

��
(3)

where TPMis determined from

TtPM ¼ Ttf þ
�
ThtPVTð1� FRÞ

�.
ðAFRUlossÞ (4)

It is noted that Eqs. (3) and (4) show the interdependencies of
electrical and thermal energy generated by PVT in each hour of
operation.

2.2. Wind turbine

The electrical power generation of a WT at time t can be
expressed as a function of wind velocity [3].
Vt
w < Vw;r (5)
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As the wind speed changes with height, the measured wind
speed at anemometer height must be converted to desired hub
height [27].

Vw;2

Vw;1
¼
�
h2
h1

�a

(6)

2.3. Energy storages

To overcome the intermittent nature of renewable sources, two
types of energy storages are used to assist with meeting thermal
and electrical loads by the RE-CHP system considered in this study.

2.3.1. Thermal energy storage
The energy stored in TES tank at the time t is [15].

SOCt
TES ¼ SOCt�1

TES � ð1� εÞ þ
�
ThtPVT � ThtLoad

.
hh

�
(7)

ThtTES ¼ SOCt
TES � SOCt�1

TES (8)

2.3.2. Electrical energy storage
The capacity of the battery bank as EES is calculated based on

number of autonomy days (AD), which implies the number of days
a battery bank can provide the load connected to the system
without a recharge by the RE sources [3].

CsEES ¼
EnLoad AD

DOD hinv hEES
(9)

and, the charge level of battery bank at the time t can be calculated
based on

SOCt
EES ¼ SOCt�1

EES � ð1� sÞ þ �
EtPVT þ EWT

t � EtEH
� EtLoad

�
hinv

�� hEES (10)

EtEES ¼ SOCt
EES � SOCt�1

EES (11)

2.4. Electrical heater

As the auxiliary heat source for the RE-CHP system, the EH
thermal power generation and electricity consumption is modeled
using [28].

ThtEH ¼ EtEH � hEH (12)

2.5. Energy management system

For proper energy conversion, distribution, and storage, EMS is
considered an essential part of RE-CHP system as shown in Fig. 2.
While it is always necessary to meet thermal load, meeting the
electrical load is subject to a pre-specified LPSP reliability index
[29] for the autonomous RE-CHP system examined in this study.
Accordingly and as directed by EMS, the RE sources and EES are
assigned the task of supplying the shortage of thermal energy
through EH, if thermal energy produced by PVT and TES is insuf-
ficient. The remainder of available electrical energy is assigned to
meet electrical load based on a given LPSP.
3. Problem formulation

The optimal design and economics of autonomous RE-CHP
system requires that the capacities and quantities of system com-
ponents are determined, so that the thermal and electrical loads are
met and, as a result, the objective cost function is minimized sub-
ject to the related constraints.
3.1. Objective cost function

In this study, total annual cost (TAC) [5] is used to form the
objective cost function for optimization, which includes initial
capital costs as well as operation and maintenance costs,

Min
	
TCCap þ TCO&M



(13)

where,

TCCap ¼ CRF
n
NWT � PrWT � EWT;r þ APV � PrPVT

þ PrPEES � CsEES þ PrTES � CsTES þ PrEH � EEH;r

þ PrPConv=inv � NConv=Inv

o (14)

TCO&M ¼ APVT � CO&M
PVT þ NWT � EWT;r � CO&M

WT (15)

and note that, there is no cost associated with environmental
emission due to utilization of RE-CHP system.

To convert the initial capital cost to annual capital cost, the
capital recovery factor (CRF) is used [10].

CRF ¼ ið1þ iÞn
ð1þ iÞn � 1

(16)

where n is the life span of RE-CHP system.
For EES and converter/inverter, the lifetime n0ð� nÞ is used to

determine the single payment present worth factor

PrpEES¼ PrEES

 
1þ

X
k

1

ð1þ iÞk

!
k ¼ n0; 2n0; :::;Kn0 � n

(17)

PrpConv=inv¼ PrConv=inv

 
1þ

X
k

1

ð1þ iÞk

!
k¼ n0; 2n0; :::;Kn0 � n

(18)

It is noted that in Eq. (15), the operation and maintenance costs
for EH, battery, converters/inverters [5] and storage tank are
assumed negligible [15].
3.2. Constraints

The optimization of objective cost function of Eq. (13) for
RE-CHP system is subject to several constraints as follows.
3.2.1. Thermal balance
As directed by EMS, the thermal load must be met in every

hourly time interval,

ThtLoad ¼ ThtPVT þ ThtEH þ ThtTES (19)
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3.2.2. Reliability index for electricity
For optimal design of autonomous RE-CHP systems of this study,

reliability is expressed in terms of LPSP, where a value of zero de-
fines a completely reliable system and one indicates that the
electrical load is nevermet. For a specified period, t (¼8760 h in this
study), the LPSP index is calculated based on

LPSP ¼

Pt
t¼1

LPSðtÞ
Pt
t¼1

ELoadðtÞ
(20)

where LPS is the loss of power supply when the available hourly
electrical energy is less than electrical load. For design purposes,
the following inequality constraint must be observed:

LPSP � LPSPmax (21)

where LPSPmax is specified as the upper bound of LPSP.
3.2.3. Storages
For storages, the following constraints for SOCTES and SOCEES

must be satisfied in each hourly time interval

SOCMin
TES � SOCt

TES � CsTES (22)

SOCMin
EES � SOCt

EES � CsEES (23)

SOCMin
EES ¼ ð1� DODÞ � CsEES (24)

Further, note that in each hourly time step, storage devices
cannot charge and discharge, simultaneously.
3.2.4. Limits of optimization variables
The optimization variables (OV) include APVNWT , AD, CsTES and

EEH;r which must be determined through each iteration of the
optimization procedure and must be within the allowable limits
based on

OV ¼
8<
:

OVMin if OV <OVMin

OVMax if OV >OVMax

OV otherwise
(25)
4. Optimization

The optimal design and economics of autonomous RE-CHP
system subject to the noted constraints is a nonlinear, non-
smooth, and non-convex problem that is solved based on E-PSO
algorithm that benefits from several enhancements developed in
this study for implementation in PSO algorithm, as described in this
section.
4.1. Particle swarm optimization algorithm

The PSO algorithm is based on the sociality of bird flocks looking
for food [12,30], where velocity and position of each bird, identified
as particle, is determined in each iteration. It is assumed that there
are nPop particles in the DM dimensional search space. For each
particle j in each iteration it, the position, personal best position,
and corresponding fitness value are Xit

j , Pbestitj and
fX;jðj ¼ 1;2;…; nPopÞ, respectively. The best location of the swarm
is Gbest and the corresponding fitness value is fGbest and, the ve-
locity of particle j is Vj. The position and velocity of particle j in each
iteration are updated based on
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8<
:Vitþ1

j ¼ C
�
uVit

j þ C1 $ Rand1ðÞ:
�
Pbestitj � Xit

j

�
þ C2 $ Rand2ðÞ$

�
Gbest � Xit

j

��
Xitþ1
j ¼ Xit

j þ Vitþ1
j

(26)
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where u, C1 and C2 are inertia, cognitive, and social weights,
respectively. Also, Rand1 and Rand2 are the uniform distributed
random numbers in the range of [0, 1]. Further, for displacement
range of each particle, the following relation is applied after
updating velocity,

Vitþ1
j ¼

8>><
>>:

Vitþ1;Min
j if Vitþ1

j <Vitþ1;Min
j

Vitþ1;Max
j if Vitþ1

j >Vitþ1;Max
j

Vitþ1
j otherwise

(27)

4.2. Proposed evolutionary particle swarm optimization

Although PSO is a powerful algorithm with high speed conver-
gence, the main disadvantage is getting trapped in a local optimum
solution because of loss of diversity of swarm [31]. In this study,
PSO algorithm is enhanced using three operators adapted from
differential evolution (DE) algorithm for escaping from possible
local optimum solution and additional computational efficiency. In
addition, it is expected that proper tuning of E-PSO parameters
would improve the exploitation and exploration of the algorithm.
In the proposed E-PSO algorithm, the three main coefficients that
strongly affect the performance of the algorithm are dynamically
updated using arc-tangent based relations as described later in this
section.

4.2.1. Mutation operation
The E-PSO algorithm employs the mutation operation which

produces a mutant vector Mj with respect to each individualXj,
referred to as target vector, in the current population. For target
vector Xj in each iteration, the associated mutant vector can be
generated based on

Mit
j ¼ Xit

rj1
þ F $

�
Xit
rj2

� Xit
rj3

�
j ¼ 1; 2; …; nPop (28)

where indices rj1, r
j
2 and rj3are mutually exclusive integers gener-

ated randomly within [1,nPop]. The scaling factor F is a random
positive parameter within½FMin; FMax�.

4.2.2. Crossover operation
After the mutation operation step, the crossover operation is

applied to each pair of the target vector Xj ¼ ðxj; xj… xjÞ and its
corresponding mutant vector Mj ¼ ðmj;mj…mjÞ to generate a trial
vectorTj ¼ ðtj; tj… tjÞ. The crossover operation used in E-PSO algo-
rithm is defined as

tbj ¼

8><
>:

mb
j if ðrandb½0;1Þ � CRÞ or ðb ¼ brandÞ

xbj;k otherwise
b ¼ 1;2;…; DM

(29)

where crossover rate CR is a user-specified constant within the
range [0,1), and controls the fraction of parameter values copied
from the mutant vector. The parameter brandis a randomly chosen
integer in the range of ½1;DM�. The applied crossover operator
copies the bth parameter of the mutant vector Mit

j to the corre-
sponding element in the trial vector Tj if ðrandb½o; 1Þ � CRÞ or
b ¼ brand, otherwise, it is copied from the corresponding target
vectorXj.

4.2.3. Selection operation
The selection operator chooses the vectors that compose the

population in the next iteration. This operator compares the fitness
of the trial vector and the corresponding target vector and selects
the one that leads to better solution. Then, out of the two vectors,
the one that is more fit is allowed to enter the next step.

4.2.4. Dynamic update of parameters
As noted earlier, the three parameters that strongly affect the

performance of E-PSO algorithm are inertia weight, cognitive
weight, and social weight coefficients [9]. A large value for u results
in better global searching capability, while a small value for u

makes the algorithm more suitable for local search. Therefore, dy-
namic adjustment of u enhances the performance of E-PSO algo-
rithm. At the beginning of a search, a large u contributes to
mutation for more effective exploration and at the later iterations,
the exploitation can be greatly enhanced by small inertia weight.
The cognitive weight C1 signifies the affection of personal best
experience and, at the start of the search, C1 should be large to
enhance the exploration. However, during the final iterations, C1 is
better to be small to improve exploitation [10]. For the social weight
C2, at the start of the search, it should have little influence on the
particle position, whereas, during the final iterations, it should be
large to enhance the social communication between particle
swarm. For implementing the E-PSO algorithm, the three noted
coefficients are dynamically adjusted at each iteration based on

uðitÞ ¼ 0:5�
�
uMax þ uMin

�
þ Ku

�
�
arctan

� �2p
MaxIt

� it þ p

��
�
�
uMax � uMin

� (30)

C1ðitÞ ¼0:5�
�
C1

max þ C1
min
�
þ KC1

�
�
arctan

� �2p
MaxIt

� it þ p

��
�
�
C1

max � C1
min
�

(31)

C2ðitÞ ¼ 0:5� ðC2 þ C2Þ þ KC2
�
�
arctan

�
2p

MaxIt
� it � p

��
� ðC2 � C2Þ

(32)

Based on the flowchart of simulation procedure shown in Fig. 3,
the process starts with generating the parent vector for E-PSO al-
gorithm. After the primary loop, operators of mutation and cross-
over are applied to create the trial vector. Comparing the fitness
values, the parent vector is obtained and the personal and global
best of each particle are updated. This procedure is repeated for all
population and then all parent vectors are determined. Then, the

http://www.tarjomehrooz.com/


Initializing input data

Generate primitive parent vector 
(APV, NWT, AD ,CpTES and EEH,r)

within their limits

iter = iter+1

Apply mutation operator 
Eq. (28)

Apply position limits 
Eq. (25)

Apply crossover operator
Eq. (29)

Apply selection operator

Update position and velocity 
Eqs. (26) and (27)

Determine individual and global 
best values

Apply position limits 
Eq. (25)

Determine individual and global 
best values

Update , C1,  C2 and for 
next iteration

Eqs. (30), (31) and (32)

Is
convergence criteria 

satisfied?

Forecast electrical and thermal 
demands of each hour

Forecast meteorological data

Determine power generation of 
PVT and WT, and stored energy 

in  battery and HST.

Apply EMS

Calculate daily operation cost

h =h +1

h = 8760?

CalculateTAC 

YES

NO

EMS Implementation

NO YES
Results

For j = 1:nPop

Fig. 3. Flowchart of simulation procedure for E-PSO algorithm developed in this study.

A. Lorestani, M.M. Ardehali / Renewable Energy 119 (2018) 490e503496

http://www.tarjomehrooz.com/


a)

b)

Time (hr)

c)

0

10

20

30

0 2000 4000 6000 8000

W
in

d
sp

ee
d

(m
/s

)

0
100
200
300
400
500
600
700
800
900

1000

0 2000 4000 6000 8000

In
so

la
tio

n
(W

/m
2 )

-20

-10

0

10

20

30

40

50

0 2000 4000 6000 8000

A
ir

te
m

pe
ra

tu
re

(°
C

)

Fig. 4. Hourly profile of meteorological data during a year: a) wind speed (at height of
10 m), b) insolation, and c) air temperature [3].

A. Lorestani, M.M. Ardehali / Renewable Energy 119 (2018) 490e503 497
position and velocity of particles in parent vector are updated ac-
cording to the PSO rules to produce another set of solutions and, the
global and personal best values are also determined for the next
iteration.

5. Parametric values

The hourly meteorological data for wind speed, insolation, and
air temperature used for simulation are for Rafsanjan, Iran (30.40 N
latitude; 55.99 E longitude) [3] shown in Fig. 4. The simulation is
conducted for 8760 h and the useful life of the RE-CHP system is 24
years. For simulation purposes over 24 years of planning horizon,
the hourly electricity and thermal loads are for mid-season day of
each season [16]. The 24 h load of mid-season day represents the
daily loads of an entire season. While the mid-season daily load is
constant for an entire season, the meteorological data used are for
8760 h of the year and, it is assumed that the yearly load and
meteorological data remain constant over the operation horizon
[3e6,10]. It is noted that the maximum electrical load is 42 kW in
summer and the maximum heating load is 80 kW in winter for a
remotely located office building equipped with autonomous RE-
CHP system.

The components specifications of autonomous RE-CHP system
are given in Table 2. The capital and operation and maintenances
costs of storage tank and EH are assumed negligible [12,15]. Also, it
is assumed that TES and EES are initially empty and, LPSPmax is set
to 0.02 [7].

The number of design variables for simulation of RE-CHP is
equal to 5 which constitutes the dimension of each particle in E-
PSO algorithm as noted in Eq. (22). The simulation parameters for
E-PSO algorithm are provided in Table 3. For Eqs. 30e32, the vari-
ations of inertia, cognitive, and social weights, during 200 iteration
of E-PSO algorithm developed in this study are shown in Fig. 5.

6. Results and discussion

6.1. Validation of optimization algorithm

To validate the performance and effectiveness of the proposed
E-PSO algorithm, the simulation of RE-CHP system has been per-
formed for 30 independent runs and, the results of E-PSO algorithm
are compared to those of other algorithms including DE, PSO, GA,
and HSA, as listed in Table 4. It is observed that the values for
minimum, maximum, and average TAC of RE-CHP system for E-PSO
during 30 different runs are close to each other, which demon-
strates the effectiveness of the enhancements introduced in E-PSO
algorithm in this study. In addition, the best, average and worst
values of the objective cost functions obtained by E-PSO are better
than the corresponding results from all the noted algorithms. Also,
it is found that the average of results of the proposed E-PSO algo-
rithm is better than the best results from other algorithms. Based
on 30 independent runs, the standard deviation of the proposed E-
PSO is $3.21, which is considerably lower than those of other al-
gorithms. For simulation time, the results show that the proposed
E-PSO algorithm performs more favorably. While the execution of
three operators and three dynamic coefficient tuning equations
may seem to be more time consuming in advance, the E-PSO al-
gorithm requires less simulation time to achieve better results with
lower number of initial population. As shown in Table 4, the initial
population of E-PSO is 18; however, this parameter for other al-
gorithms is higher for achieving proper convergence (Fig. 6). Hence,
it is determined that the proposed E-PSO algorithm, as compared
with other optimization methods, can search the feasible space
more effectively and reach the global optimumwith lower number
of cost function evaluation.
The sensitivity of simulation results to the proposed enhance-
ments of the E-PSO algorithm for 30 independent runs is shown in
Table 5, where the impacts of tuning the proposed dynamic pa-
rameters and the exclusion of mutation, crossover, and selection
operators on exploration and exploitation of the algorithm are
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Table 3
E-PSO algorithm simulation parameters used in
this study.

Parameter Value

DM 5
nPop 18
MaxIt 200
uMax 1

uMin 0.4

ku 0.4

CMax
1

1.5

CMin
1

0.1

kC1
0.4

CMax
2

1.5

CMin
2

0.1

kC2
0.4

FMax 0.2

FMax 0.7
CR 0.4

Iteration
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Fig. 5. Variation of inertia, cognitive and social weight coefficients during 200 itera-
tions of E-PSO algorithm developed in this study.

Table 2
RE-CHP components specifications [3e5,15,26,28].

Parameter Value (Unit)

PVT
PrPVT 415.4 ($/m2)
CO&M
PVT

2 (%)

n0 24 (years)
href 0.15

bref 0.005
taPV 0.75
Uloss 7 (W/m2K)
FR 0.85
NOCT 297 (K)
WT
Vw;cut�in 2.5 (m/s)
Vw;r 9.5 (m/s)
EWT ;r 10 (kW)
PrWT 2700 ($/kW)
CO&M
WT

2 (%)

Voltage 48 (V)
a 0.14
n0 25 (years)
EES
hEES 85 (%)
n0 5 (years)
PrEES 280 ($/kWh)
DOD 80 (%)
s 0.0002
TES
PrTES 0
hh 0.9
ε 0.05
EH
hEH 0.98
PrEH 40 ($/kW)
Inverter/Converter
hinv 0.95
n0 10 (years)
PrConv=inv 2000 ($)
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determined. It is found that the exclusion of the noted operators
results in higher average TAC. This trend is also observed for C1, C2
and u non-linear tuning.
6.2. RE-CHP operational performance

The optimal values for design parameters of RE-CHP system and
the corresponding TAC and LPSP based on E-PSO algorithm are
shown in Table 6. The calculated TAC of the system is $56310.98
and, it is observed that LPSP for the autonomous RE-CHP system is
0.01which is less than LPSPmax of 0.02, while thermal load is met in
full in every hour of the year.

In the optimal design of RE-CHP autonomous system, there
exists a tradeoff between costs and reliability and, the sensitivity of
TAC to variation in LPSPmax is shown in Fig. 7.

The daily thermal and electrical efficiencies of PVT panel during
mid-seasonweak of winter and summer are shown in Fig. 8, where
the thermal efficiency based on Eq. (1) reaches 55% in winter and
40% in summer and, the electrical efficiency based on Eq. (3) ap-
proaches 14% inwinter and 12.5% in summer. As a result, the overall
efficiencies of 69 and 52.5% are achieved for PVT panel for winter
and summer, respectively. The electrical and thermal performances
of RE-CHP for four sample days are depicted in Fig. 9. In general, it is
observed that integration of RE sources has resulted in electricity
generation by PVT panel and WTs to reduce the effects of inherent
intermittencies. For mid-season days for every season, in the early
hours of day, while there is no contribution from PVT panel, the
electricity generation by WTs and EES meets the electricity base
load for the office building and the excess energy is stored in EES.
For winter, EH is also activated during the early hours of winter
mid-season day and EH consumes electricity to assist with meeting
thermal loads. It is also observed that the high thermal efficiency of
PVT has resulted in thermal energy generation above and beyond
the loads for every season to allow for storage by TES.
6.3. Effects of different configurations

It is of interest to examine the effects of different configurations
of RE sources on TAC of the RE-CHP system. The importance of
utilizing solar and wind energy sources together in a RE-CHP sys-
tem is demonstrated in Table 7. It is founded that the TAC of RE-CHP
systemwithout PVT has increased by 75%. When PV is used instead
of PVT, the TAC of RE-CHP has experienced an increase by more
than 55% which indicates that using PVT in RE-CHP system is
economically more favorable than using PV. Further, utilization of
PVT panel in the autonomous RE-CHP system results in more reli-
able operation (LPSP ¼ 0:01) than RE-CHP system without PVT
(WT-TES-EES-EH) or with PV (PV-WT-TES-EES-EH). Also, TAC of RE-
CHP systemwithout WT (PVT-TES-EES-EH) has increased by 22.6%.
In the absence of WT, the size of PVT has greatly increased and, in
the absence of PVT, the number of WTs in PV-WT-TES-EES-EH and
PVT-WT-TES-EES-EH systems has increased from 5 to 10 and15,
respectively. Further and as to be expected, the absence of WT in
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Table 5
Results: Sensitivity of TAC results to E-PSO algorithm enhancements for the
autonomous RE-CHP system based on 30 independent runs.

Optimization algorithm Lowest
TAC ($)

Average
TAC ($)

Highest
TAC ($)

PSO 56462.14 56878.77 57744.56
E-PSO without mutation

and crossover operators
56314.83 56336.50 56413.58

E-PSO without C1,C2
andunon-linear equation

56313.87 56406.16 56589.80

E-PSO 56310.98 56312.53 56330.06

Table 6
Results: Optimal values for design parameters of autonomous RE-CHP system and
the corresponding TAC and LPSP.

Parameters Lower bound Optimal values Upper bound

APV (m2) 0 530 2500
NWT 0 5 15
AD 0 0.5 3
CsEES(kWh) 238
CsTES (kWh) 0 700 3000
EEH,r 0 48 90
LPSP 0 0.01 0.02
TAC ($) 56310.98

LPSPmax

5.6

5.7

5.8

5.9
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6.2

0 0.002 0.004 0.006 0.008 0.01
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Fig. 7. Effects of reliability level on TAC of the RE-CHP.

Table 4
Results: Validation of E-PSO algorithm based on TAC values for optimization of autonomous RE-CHP system out of 30 independent runs.

Optimization algorithm Initial population Lowest TAC ($) Average TAC ($) Highest TAC ($) Median TAC ($) Standard deviation Simulation time (s)

DE 35 56338.60 56480.90 57100.14 56374.95 301.10 358
PSO 50 56462.14 56878.77 57744.56 56776.69 323.54 376
GA 75 56338.61 57044.00 63377.25 56366.21 2103.90 751
HSA 50 56338.61 59731.11 63416.32 56450.04 3585.25 340
E-PSO 18 56310.98 56312.53 56330.06 56310.98 3.21 338

Iteration

5.62

5.72

5.82

5.92

6.02

0 50 100 150 200

TA
C

($
)

x
10

00
0

E-PSO
PSO
DE
GA
HSA

Fig. 6. Validation and convergence comparison of E-PSO with those of PSO, DE, GA and
HSA algorithms for the optimization of autonomous RE- CHP system examined in this
study.
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Fig. 8. PVT daily electrical and thermal efficiencies during mid-season weak of a)
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RE-CHP system results in substantial increase in storage capacities.
Without utilization of EH, the TAC of RE-CHP system increases up to
$100123.28 and the optimum number of WTs approaches zero, as
the conversion of electricity to thermal energy is unavailable.

6.4. Effects of storage sizes

To study the impacts of storage sizes on TAC of the RE-CHP
system, sensitivity analyses have been conducted based on AD of
EES and capacity of TES as shown in Fig.10. For EES, it is determined
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Fig. 9. Results: RE-CHP system operational performance during mid-season day of each season. Note that for storages, (�) value indicates charging and (þ) value indicates dis-
charging. For EH, (�) indicates electrical energy consumption and (þ) indicates thermal energy production.
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Table 7
Results: Comparison of performance for different RE-CHP system configuration.

RE-CHP system configuration APV (m2) NWT AD CsTES(kWh) EEH,r (kW) TAC ($) LPSP TAC increase (%)

PVT-WT-EES-TES-EH 530 5 0.5 700 48 56310.98 0.01 e

PV-WT-EES-EH 920 9 2.7 e 90 94478.62 0.02 67.78
WT-EES-EH e 15 2.77 e 90 102490.32 0.02 82.00
PVT-EES-TES-EH 1155 e 1.42 1650 18 80360.99 0.02 42.71
PVT-WT-EES-TES 2000 0 0.7 1300 e 100123.28 0.02 77.80

Autonomy day of EES
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Fig. 10. Effects of RE-CHP system storage sizes on TAC: a) EES, b) TES.

Table 8
Results: Annual environmental emission reduction of RE-CHP system.

Generation type Pollutant

NOx SO2 CO CO2

Electricity
(steam power plant)

Value (g/kWh) 2.68 5.70 1.61 762.04
Reduction (kg/year) 442.04 940.15 265.55 125689.83

Heating (NG) Value (g/kWh) 1.33 0.22 0.05 0.36
Reduction (kg/year) 257.24 42.07 9.55 70.40

Autonomous
RE-CHP

0 0 0 0

Total reduction
of pollutants

699.28 982.22 275.10 125760.23
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that the minimum TAC occurs at AD ¼ 0.5. For TES with zero
operation and maintenance cost, the minimum TAC is 700 kWh. It
is observed that TAC of RE-CHP system experiences an increasing
trend for all values for AD greater or less than AD¼ 0.5, as EES must
supply both the electrical load and the thermal load through EH.
However, for TES, TAC asymptotically approaches a constant value
for TES capacities greater than the optimal value.
6.5. Environmental effects

The air pollution and greenhouse gas emissions due to fossil fuel
consumption include NOx, SO2, CO and CO2 and [32], the utilization
of RE-CHP is expected to prevent the emission of all such pollutants.
For analyzing the environmental effect of the autonomous RE-CHP
system, the electrical and thermal energy are examined separately.
The annual environmental emission reductions resulting from
utilization of RE-CHP system in terms of equivalent electricity
generation and heat production by means of steam power plants
and NG, respectively, are given in Table 8, where transmission line
and distribution system losses are not accounted for. It is expected
that accounting for such losses is dependent on network topologies
and would result in higher emissions.
7. Conclusions and recommendations

In this study, the optimal design and economics of autonomous
RE-CHP system including PVT, WT, EES, TES and EH for a remotely
located office building are examined. An EMS for proper energy dis-
tribution is used and, the economic benefits of utilizing the proposed
configuration of RE-CHP system are analyzed. The findings confirm
that RE sources can be incorporated successfully into the design of
CHP systems operated autonomously, when the complementary
performances of PVT and WT coupled with storages and EH can
provide formeeting thermal and electrical loads throughout the year.

Based on examination of various configuration for RE-CHP sys-
tems, the simulation results show that TAC substantially increases,
when thermal energy from PV and TES are not utilized (PV-WT-
EES-EH). When WT or EH are not included in the RE-CHP config-
uration, similar increase in TAC can also be expected. For storages,
optimal sizing of EES is found to be critical to minimizing TAC. It is
concluded that, as the most immediate effect of utilization RE-CHP
system for meeting thermal and electrical loads, there exist op-
portunities for diminishing all environmental pollutants that may
otherwise be emitted from use of fossil fuel.

For optimization, the novelty of the newly developed E-PSO
algorithm introduced in this study is demonstrated by comparing
its performance in terms of convergence and simulation time with
those of DE, PSO, GA, and HSA algorithms.

The results of this study confirm that properly designed and
configured RE-CHP systems can provide for meeting thermal and
electrical loads for remote areas applications with an adequate
level of reliability, where the expansion of NG fuel piping and
electricity networks may not be economically feasible.

For future work, due to availability of thermal energy from PVT
and EH, absorption cooling chiller could be added to system ar-
chitecture for meeting cooling loads.
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Nomenclature

A: Area of PV and collector (m2)
AD: Number of autonomy day
brand: A random integer number
C: Cost
C1: Cognitive weight
C2: Social weight
Cs: Capacity of storage unit (kWh)
CR: Crossover rate
DM: Dimensional search space
DOD: Depth of discharge
E: Electrical power (kW)
En: Daily load energy (kWh)
f : Fitness value
fGbest: Fitness value of the global best
F: Random positive parameter
FR: Heat removal efficiency
G: Solar irradiation (kW/m2)
Gbest: Global best position
h: Anemometer height
i: Interest rate
it: Number of iteration
j: Number of particle
K: Shape-shift coefficient
LPS: Loss of power supply
LPSP: Loss of power supply probability
M: Mutant vector
MaxIt: Maximum number of iteration
n: Life of RE-CHP system (year)
n0: Life of equipment (year)
N: Number of elements
NOCT: Cell nominal operating temperature
nPop: Number of population
Pbest: Personal best position
Pr: Price per unit of component ($)
SOC: Stored energy in storage system (kWh)
T: Temperature (k)
TC: Total cost ($)
Th: Thermal power (kW)
Uloss: Heat loss coefficient (W/m2K)
X: Position Vector
V: Velocity

Greek symbols

a: Friction coefficient of the landscape
b: Temperature coefficient (K�1)
ε: Heat loss coefficient (h�1)
h: Efficiency
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s: Hourly self-discharge rate of the battery
t: Specified period
ta: Transmission and absorption coefficient
u: Inertia weight

Subscripts

a: Ambient
Conv/Inv: Converter or inverter
Cap: Capital
CRF: Capital recovery factor
Cut-in: Cut-in speed of wind turbine
Cut-out: Cut-out speed of wind turbine
dump: Dumped energy
E: Electrical
EES: Electrical energy storage
EH: Electrical heater
f: Fluid (water)
h: Heat use efficiency
inv: Inverter
Load: Load
O&M: Operation and maintenance
PV: Photovoltaic
PVT: Photovoltaic-thermal
r: Rated
ref: Reference
Rand: Uniform distributed random numbers
TES: Thermal energy storage
Th: Thermal
w: Wind
WT: Wind turbine

Superscripts

Min: Minimum
Max: Maximum
t: Time interval
P: Present Worth

Acronyms

RE: Renewable energy
CHP: Combined heat and power
CRF: Capital recovery factor
CS: Cuckoo search
DE: Differential evolution
EH: Electrical heater
EMS: Energy management controller
EES: Electrical energy storage
E-PSO: Evolutionary particle swarm optimization
FC: Fuel cell
GA: Genetic algorithm
HSA: Harmony search algorithm
HSS: Hyper-spherical search algorithm
ICA: Imperialistic competition algorithm
LMM: Levenberge Marquardt method
LP: Linear programming
LPSP: Loss of power supply probability
MINP: Mixed integer nonlinear Programming
MT: Micro-turbine
NG: Natural gas
OV: Optimization variable
PV: Photovoltaic
PVT: Photovoltaic-thermal
QP: Quadratic Programming
SA: Simulated Annealing
SQP: Sequential quadratic programing
TAC: Total annual cost
TES: Thermal energy storage
WT: Wind turbine
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