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A B S T R A C T

This paper proposes a simple approach to design fractional-order (FO) controller via internal model control
(IMC) technique for load frequency control (LFC) problem in power systems. The proposed scheme utilizes the
concept of CRONE principle, model-order reduction and FO filter in IMC framework to derive a robust controller.
Initially, the scheme is applied to single-area power system and then extended to two-area interconnected
system. The turbines considered are non-reheated, reheated and hydro type; and physical constraints of turbine
and governor are also taken into account to validate the applicability in more realistic environment. Simulation
results show that it can bring improved disturbance rejection performance in nominal condition as well as in
presence of uncertainties and constraints in plant parameters.

1. Introduction

Power system control is one of the most challenging task in control
engineering because the total generated power should balance the total
load in presence of numerous electrical machines such as generating
units, protection devices, controller loops and power transmission lines
that generally spread in large geographical areas. Essentially, there
would be performance deterioration in the form of frequency fluctua-
tions, voltage instability, constant but unexpected load change, opera-
tional limits, rotor angle instability, economy in operation, and physical
and environmental disturbances. Therefore, these discrepancies must
be eliminated for satisfactory operation of power system.

Among the various power system control strategies [1], LFC deals
with the regulation of frequency fluctuations,i.e., frequency should re-
main nearly constant in all control areas. In short, the LFC adjusts the
load reference point against the variation of the load changes in order
to keep the system frequency and tie-line power as closed to the pre-
scribed values as possible. The main objectives of LFC are to: 1)
maintain zero steady state error for frequency and tie-line power de-
viations, 2) reject sudden load disturbance, 3) attain optimal transient
behavior under prescribed overshoot, settling time and error tolerance,
4) provide robust performance in presence of modeling uncertainties
and nonlinearities, 5) establish better security margin of system in sense
of stable frequency regulation, and less computing power [2–4]. Thus,
LFC can be treated as an objective optimization and robust control
problem. In view of this various LFC strategies have been developed

using optimal, robust, adaptive and intelligent control perspectives
[5–7].

These days FO control scheme has received great attention among
the control practitioners due to improved control performance espe-
cially for the systems working in uncertain environment, and exact
modeling of complex systems [8,9]. The FO system and control schemes
are generally better than their integer-order (IO) counterparts. As a
result, a few fractional-order PID (FO-PID) control methodologies have
also been introduced for LFC problem. The first FO-PID scheme was
presented by Alomoush [10] in which LFC has been considered as a
constrained optimization problem for two-area power systems. The
integral error criterion particularly ITAE was selected as an optimiza-
tion function to evaluate PID parameters. In [11], the stability
boundary locus method was employed to search the stabilizing FO-PID
parameters of a hybrid single-area power systems. Later on, nature
inspired evolutionary and soft computing schemes (like, the non-
dominated sorting genetic algorithm-II, firefly algorithm, imperialist
competitive algorithm) are introduced to design optimal FO-PID con-
trollers for multi-area power systems [12–14]. In these intelligent op-
timization schemes, the multi-objective functions are framed using in-
tegral square indices such as ITAE ISE ISDCO, , (integral of the
squared deviation in controller output) and other figure of merits to
tune PID parameters. Although the aforementioned LFC schemes have
shown their effectiveness and dominance over classical approach, there
are deficiencies due to heavy computational burden, premature con-
vergence during optimization process and sluggish disturbance
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attenuation.
IMC technique is a control strategy that has been successfully used

for few decades [15–20]. It is observed that simplicity, robustness, sub-
optimality and wide area applicability are some features that have
popularized IMC among control scientists and practitioners. After the
introduction of IMC scheme in FO systems and control for last
2–3 years, the FO-PID got a new way for its synthesis and tuning (See
[21] and the references therein). Moreover, in literature on one hand,
CRONE (abbreviation of “Commande Robuste d’Ordre Non Entier”
which means “non integer order robust control”) principle is highly
popular for designing FO controller [22] and on the other hand IMC is
famous control scheme for designing IO controller. Fortunately, the
pioneer work of Maâmar & Rachid [23] bridges both control schemes to
build FO controller. Through this method, the controller acquires the
FO-PID form via IMC methodology and tuning scheme is evolved using
CRONE principle.

Motivated by the celebrated work of [23], the FO controller design
scheme is proposed in this paper which make use of reduced-order
modeling to acquire the dominant features of the higher-order plant.
Also to the best of author’s knowledge, such LFC scheme is missing in
power control research. Therefore in this paper, a FO-PID based on IMC
and CRONE schemes is proposed for frequency regulation of single and
multi-area power systems. The proposed design requires only frequency
domain specifications particularly phase margin and gain crossover
frequency as a prerequisite. The main advantages of this work is that:
(i) the proposed scheme exhibits robustness as the controller para-
meters, tuned with the help of gain and phase margin specifications,
works well when parametric uncertainties are present in power plant,
(ii) the controller is optimal as it minimizes the integral error indices,
and (iii) for executing LFC, substantial improvements are observed in
the performance using the proposed method in comparison to the re-
cently developed methods.

2. Description of LFC model

Electric power systems are complex non-linear dynamical systems
consisting of numerous generators and loads. However for modeling
purpose, all the generators are lumped into single equivalent generator
and likewise for loads. Since, power systems are exposed to small load
changes, the system can be adequately represented by its linear model
[2,33]. The basic power system notations are presented in Table 1.

2.1. Single-area power system

The block diagram of a single-area power system supplying power
to single service area through single generator is shown in Fig. 1. The
dynamics of this plant which consists of governor, non-reheated tur-
bine, and load and machine can be written as
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In terms of transfer function model, the governor is
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As LFC is a disturbance rejection problem, so our aim is to find a control
law: = −u s C s f s( ) ( )Δ ( ) such that =→∞ f t Plim Δ ( ) 0, for all Δt d.

Remark 1. Nonlinearities (backlash and wind-up problems) in the
speed control are normally neglected except for rate limiter and the
limits on valve position. All damping torque to prime-mover, generator
and the HVDC system are also assumed to be negligible.

3. Design tools

In this section, we put forward few prerequisites to present our
proposed work. Throughout the paper, the real and natural numbers are
symbolized by � and �, respectively. Further +� denotes the real po-
sitive numbers. For any signal x t( ), its Laplace transform is denoted by
X s( ). A stable continuous-time, linear time-invariant finite dimensional
single-input single-output system described by a rational proper
transfer function G s( ) is considered whose order is denoted with ρ G( ).
A stable system G s( ) is a minimum-phase system if the zeros of the
system are stable, i.e., roots of the numerator polynomial are in left-half
of complex s-plane.

3.1. Fractional-order system

Here, a brief exposition of FO operators and their properties are
given. Fractional calculus is actually the generalization of IO integra-
tion and differentiation to any arbitrary real number. It is an old con-
cept in mathematics however in control engineering it has witnessed a
remarkable progress from last one decade after the introduction of FO
controllers [8,9,24]. Now, we introduce the notion of generalized FO
operators. The continuous integro-differential operator of order ∈α �

(often denoted by Dx t
α, where x and t denote the limits of the operation)

Table 1
Nomenclature of Basic Power Systems Terms.

f tΔ ( ) Incremental change in frequency (Hz)
P tΔ ( )d Load disturbance (p.u. MW)
P tΔ ( )G Incremental change in generator output (p.u. MW)
X tΔ ( )G Incremental change in governor valve position (p.u. MW)

KP Electric system gain
TP Load and machine time constant (s)
TT Non-reheated turbine time constant (s)
Tr Reheated turbine time constant (s)
Tw Hydro turbine time constant (s)
TG Governor time constant (s)
c Percentage of the power generated in the reheat portion
R Speed regulation due to governor action (Hz/p.u. MW)
Bi Frequency bias (p.u. MW/Hz)

Fig. 1. Block diagram of single-area power system.
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is defined as
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In this paper, we define the FO system using the differential equation of
the form
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2� . On interpreting this equation in
the popular Caputo sense (see Definition 1) and applying the Laplace
transform for zero initial condition, the transfer function can be ob-
tained as
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where ≠a 0m and >μ νm l is assumed so that G s( ) is strictly proper.1

Definition 1. The Caputo definition of FO derivative of order α of a
continuous function →+f : � � is defined as:
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where f t( )n( ) is the nth derivative of f t( ) with respect to ∈t n, � and
Γ(•) is Gamma function.2 The Laplace transform of this derivative is
given by
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dt

n
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Remark 3. In literature, various definitions of fractional calculus are
presented but Caputo definition is highly popular particularly in
engineering. In Caputo definition, the initial conditions are of integer-
order (i.e., derivative of constant is zero) which make them easier to
interpret because the IO derivatives of involved variables have well-
established physical meanings and can be easily obtained by
experimental means.

Like the IO system where the building blocks of system are in-
tegrators and differentiators, the FO system also constitutes FO in-
tegrators and differentiators as their basic elements.

Definition 2. The transfer function of FO integrator is defined as

= ∈G s
s

p( ) 1 , (0, 1).p (9)

For =p G s1, ( ) is a simple pure integrator. As p tends towards 0,
the effect of integration operation eliminates because =s 10 .

Remark 4. In control theory, the addition of pure integrator retards the
speed of response but here the FO integrator relaxes this constraint.

Putting =s ωj in (9), the spectral transfer function is obtained as

=
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1
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and the phase is
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2p
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From (10) and (11), it is clear that the magnitude of a FO integrator in
the frequency domain drops at a rate of p20 dB/dec and its phase is
−pπ/2 throughout the domain. Whereas the IO integrator yields fixed
drop at a rate of−20 dB/dec in magnitude and −π/2 in phase response.
This may hinders the stability and robustness of the closed-loop system.
Thus the FO integrator introduces new degrees of flexibility that sim-
plifies the design of high performance controller.

3.2. IMC technique [15,16]

IMC is a model predictive based control technique which utilizes an
additional plant model to predict the output and rectify the error be-
tween desired and actual output. Fig. 2 shows the structure of the IMC
controller in which P s( ) is a plant and its model is ∼P s( ). The IMC
controller Q s( ) is composed of inverse of ∼P s( ) cascaded with IMC filter
F s( ). The output of the plant is yo for input yi and disturbance is d. The
output is formulated as

=
+

+ −
+
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∼
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where = −∼P s P s P sΔ ( ) ( ) ( ) is the plant-model mismatch. If the model of
plant is an exact representation of the real plant, i.e., =∼P s P s( ) ( ), and
=F s( ) 1 then from (12) we get =Y s Y s( ) ( )o i for all D s( ). Thus, perfect

tracking and disturbance rejection can be achieved in this ideal case.
However, such control strategy cannot be directly implemented in the
case where the model of the plant is strictly proper or non-minimum
phase.

Generally in real time scenario, plant-model mismatching is present
and the uncertainty in the plant increases with frequency. At this stage,
robustness against plant-model mismatch can be improved by means of
filter F s( ). This filter is designed to add poles to ∼P s( ) and is chosen such
that the closed-loop system retains its asymptotic tracking properties
(i.e., zero offset at steady state for asymptotically constant inputs and
step type disturbances). It is usually a low-pass filter of the type

=
+

F s
λs

( ) 1
(1 )n (13)

where λ is the filter parameter that fixes the bandwidth of the closed-
loop system and =ρ F n( ) is chosen according to the order of ∼P s( ).
Using this approach, Q s( ) parameters are linked in a unique straight-
forward manner to ∼P s( ) parameters. In (13), λ is now the only para-
meter to be tuned to influence the speed of response of the closed-loop
system. This λ is also detuned to maintain the robustness in presence of
plant-model uncertainties. Therefore a trade-off is imposed for sacrifi-
cing performance to attain robustness which is inherent to any control
system.

The IMC structure is complex for practical implementation, and it is
usually rearranged into its equivalent conventional feedback control
structure as shown in Fig. 3. The relation between Q s( ) and ∼P s( ) of
Fig. 2 and C s( ) of Fig. 3 is given by

=
− ∼C s Q s

Q s P s
( ) ( )

1 ( ) ( ) (14)

Remark 5. The main advantage of the IMC technique is the stability of
the closed-loop system. As the IMC structure is internally stable (i.e.,
P s( ) and Q s( ) are stable), therefore its equivalent conventional
feedback control structure is also stable.

1 A strictly proper transfer function satisfies →G s( ) 0 as → ∞s .
2 The Gamma function is defined by ∫= >∞ − −p t e t pΓ( ) d , ( ) 0p t

0
1 R
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Remark 6. At many instances, the actual plant exhibits non-minimum
phase characteristics (RHP zeros or delay). In such cases, IMC
procedure is applied by segregating the plant into its minimum phase
and non-minimum phase elements, i.e.,

= − +P s P s P s( ) ( ) ( )

where −P s( ) is minimum phase part and +P s( ) is non-minimum phase
part. And the minimum phase element is used to design the controller.

3.3. Reduced-order modeling

Reduced-order modeling is a tool which simplifies the high-order
complex real plant into its adequate low-order model such that the
important features of the original system are retained in the reduced
model. This tool reduces the computational effort for analyzing the
complex dynamics of the real plant by removing any redundant in-
formation. Thus, it helps in designing and developing the controller
with less effort and at cheaper cost [25–28]. In control system, it pur-
sues the following definition.

Definition 3. Let ↦B s u y( ): be the original system with =ρ B v( ) ,
then the reduced-order modeling is a technique to find a reduced-order
model ↦∼∼B s u y( ): with =∼ρ B w( ) so that <w v and for the same input
∈ ≈∼u t L y t y t( ) , ( ) ( )2 .

The reduced-order modeling scheme must satisfies the following
properties: (i) it targets to minimize the infinity norm approximation
error defined by = − = −∼ ∼

∞ ⩾E s B s B s B ω B ω( ) || ( ) ( ) || sup | ( ) ( )|,ω 0
∈ωfor all � ; (ii) system properties, such as stability, are preserved;

and (iii) the procedure is computationally efficient. In this paper, we
follow the Routh approximation based reduced-order modeling method
[29]. In this method, the Routh table for the original plant is developed,
and then the reduced model is constructed in such a way that the
coefficients of its Routh table matches up to a given order with that of
the original plant. The detailed procedure is provided in the later sec-
tion.

3.4. CRONE principle

The CRONE principle relies on the concept of robustness in order to
maintain time and frequency domain performance measures (iso-
damping property, stability margin) using complex fractional integra-
tion [30,31]. It actually includes the concept of Bode’s ideal transfer
function. In CRONE principle, the open-loop transfer function L s( ) is
the transfer function of a FO integrator as = ∈L s γ( ) , (1, 2)τs

1
γ and

>τ 0, where

= −ω τgc
γ1/ (15)

is a gain crossover frequency.3 Thus in open-loop, it has constant slope
of − γ20 dB/s and phase curve is horizontal line at −γπ

2 . The Nyquist
curve is a straight line through the origin with argument −γπ

2 . Let us
now consider a unity feedback system with ≔ =P s P s C s L s( ) ( ) ( ) ( )o

inserted in the forward path as shown in Fig. 3 for which the closed-
loop transfer function can be written as

≔
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Substituting =s ωj and = ej jπ
2 , the spectral transfer function of T s( ) is
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From (18) and (19), it is obvious that at = =ω T ω0, (j ) 0 and
=T ωarg[ (j )] 0. The asymptotic behavior of T ω(j ) at → ∞ω is

≈ −T ω γ τω(j ) 20 log( ) and ≈ −T ωarg[ (j )] γπ
2 . See appendix A for eva-

luation. Hence, the frequency response resembles with the low-pass
filter.

Definition 4. The frequency at which the maximum value of the
spectral transfer function (known as resonance peak Mr) is attained is
called resonance frequency ωr .

The resonance peak Mr at resonance frequency ωr is given by the
formula

= =M ω
τ

γπ1
sin

, 1 cos
2r γπ r

τ

2

1

Refer appendix B for proof. The natural frequency and damping ratio
are given by

⎜ ⎟= ⎛
⎝
− ⎞
⎠

ω
τ

π
γ

1 sin 1 1
p

and

= −ζ π
γ

cos

respectively. See appendix C for derivation. Also, the phase margin4 is

= ⎛
⎝
− ⎞
⎠

ϕ π
γ

1
2 (20)

Now it is clear that when the system parameter τ varies while keeping
the γ fixed, only the rise time (i.e., natural frequency) and speed of the
response (i.e., resonance frequency) varies while ensuring the constant
resonance peak and phase margin and thus correspondingly a constant
damping ratio and overshoot in time domain. Therefore, we can shape
the output response close to the desired response by varying the re-
ference tuning parameters (γ ω, gc).

Fig. 2. Schematic diagram of the IMC.

Fig. 3. Schematic diagram of the conventional feedback control structure.

3 A gain crossover frequency, ∈ ∞ω [0, )gc , for L s( ), is a frequency at which
=L ω| (j )| 1gc .

4 The phase margin for T s( ) is defined by = +ϕ L ω πarg[ (j )]gc .
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4. Proposed FO-PID controller design scheme

We now present our proposed controller design scheme.

4.1. Controller framework

Let us consider an all-pole plant to be controlled as

= >P s K
D s

K( )
( )

, 0

where = + + …+ +−
−D s d s d s d s d( ) n

n
n

n
1

1
1 0, and ∈= …d{ }i i n1,2, , � such

that P s( ) is stable. The general form of second-order reduced-model can
be written as
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2
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where ∈∼
=

+d{ }i i 1,2,3 � . To design IMC based controller, a FO filter of
form

=
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λs
ψ λ( ) 1

1
, 0 1; 0ψ 1 (22)

is chosen in place of filter of form (13). The IMC controller is de-
termined as
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Using (14), the equivalent conventional feedback controller is
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which can be further rearranged as
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where = = =∼ ∼ ∼ ∼ ∼k d kλ τ d d τ d d/( ), / , /c i d1 1 0 2 1.

Remark 7. Eq. (23) represents C s( ) as a FO-PID controller which is a
combination of conventional IO type PID controller and FO integrator

s1/ ψ.

4.2. Tuning of controller

In the proposed controller, only two parameters (λ ψ, ) are unknown.
To determine these tuning parameters, we present few immediate re-
sults derived from discussions in Section 3.

Lemma 1. A good IMC based control is obtained if the reduced-order model
∼P jω( ) approximates the magnitude of real plant P jω( ) within achievable
bandwidth.

Proof. From (12), we can say that a good control (i.e.,
≈Y s Y s D s( ) ( ) for all ( )o i ) is obtained when

≈∼−P jω P jω| ( )Δ ( )| 01
(24)

and

≈∼−P jω P jω| ( ) ( )| 11
(25)

within achievable bandwidth. Therefore, (24) and (25) imply that

≈∼P jω P jω| ( )| | ( )| (26)

Theorem 1. For a minimum-phase system, the closed-loop transfer function
derived using IMC technique is exactly or approximately the transfer
function of the IMC filter used.

Proof. Consider a minimum-phase plant G s( ) and its approximated
model as ∼G s( ). The IMC controller with filter F s( ) can be obtained as
= ∼−Q s G s F s( ) ( ) ( )1

. The corresponding conventional feedback

controller is

=
−

∼−
C s G s F s

F s
( ) ( ) ( )

1 ( )

1

The closed-loop transfer function ≔ +T s( ) C s G s
C s G s
( ) ( )

1 ( ) ( ) , now becomes
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∼
∼
−

−T s G s G s F s
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( ) ( ) ( ) ( )
1 ( ( ) ( ) 1) ( )

1

1 (27)

To evaluate T s( ), two cases are considered.
Case 1: When =∼G s G s( ) ( ), i.e., the case of perfect control, then from

(27) we have

=T s F s( ) ( ) (28)

Case 2: When ≈∼G s G s( ) ( ), i.e., the case of good control (Lemma 1),
then from (27) we get

≈T s F s( ) ( ) (29)

Eqs. (28) and (29) imply that the closed-loop transfer function of the
system to be controlled using IMC technique is exactly or approximately
the transfer function of the filter used. □

If ∼F s( ) described in (22) is used to design IMC controller, then from
Theorem 1, we get = ∼T s F s( ) ( ). Now, this FO filter can be treated as a
reference closed-loop model as per the CRONE principle. On comparing
(22) and (16), we get =τ λ and = +γ ψ 1 and substituting these values
in (15) and (20), we get

=
−
− = +ψ

π ϕ
π

λ ω
/2

1; 1/m
gc
ψ 1

(30)

Thus, with the help of desired ϕm and ωgc the proposed controller can be
tuned.

Remark 8. In general practice, the bandwidth of the overall control
system is considered greater than that of the plant whereas it is opposite
in the case where plant has non-minimum phase characteristics or input
constraints.

4.3. Rejection capacity and stability of control system

.

Corollary 1. Under the assumption that there is almost zero plant
model mismatching, the disturbance response for step type input is zero
when FO filter of form (22) is used.

Proof. The immediate result of Theorem 1 gives =T s F s( ) ( ). The
transfer function from disturbance to output is the sensitivity function
S s( ) and is given by

= ≔ − =
+

+

+
Y s
D s

S s T s λs
λs

( )
( )

( ) 1 ( )
1

ψ

ψ

1

1

Therefore, for a unit step input =D s( ) s
1 , the output Y s( ) is

=
+

+

+Y s
s

λs
λs

( ) 1
1

ψ

ψ

1

1

On applying final value theorem of signal processing theory, we get

= =→∞ →y t sY slim ( ) lim ( ) 0t s 0

□

Thus it is clear that the proposed controller has capability to reject
the disturbance. Now we examine the stability of the closed-loop
system. The stability analysis methodology for FO system is different
from that of the IO system. Here, the stability is defined using extended
Matignon’s Theorem as stated below.

Theorem 2. If pi’s are the roots of a characteristic equation
= + ∑=s a sΔ( ) 1 i

m
i

μi
1 , then the system is bounded-input, bounded-output
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stable if and only if

>arg p
μπ

| ( )|
2i (31)

provided

< <μ0 2 (32)

Proof. The proof could be performed in a way as given in [32].

From Theorem 1, the denominator of F s( ) in (22) acts as a char-
acteristic equation:

= +s λsΔ( ) 1
y
x (33)

where = + ∈ψ x y1 ; ,y
x � and < <1 2y

x . Let =σ s x
1
then (33) becomes

= +σ τsΔ( ) 1 y whose roots are

== … −
+

p
τ

e{ } 1
l l y

l
y π

0,1, , ( 1)
j 1 2

(34)

According to Theorem 2, for stability of (33), it is required to prove that
= >

+
p e|arg( ) |i τ

π π
x

1 j
2

l
y

1 2
. From (32), it can be said that < <μ0 2 or

< <0 2x
1 . Since < 2y

x or < ⇒ >y x2 y x
1 1

2 . Therefore, it is evident that

>+ l π
y

π
x

(1 2 )
2 . Thus, the closed-loop FO system is stable.

5. FO-PID controller design for LFC

We now apply the proposed scheme to solve LFC problem.

5.1. Two-area power system

The LFC design can be extended to multi-area interconnected power
systems. Without the loss of generality, the LFC problem for a two-area
power system is presented in this paper. Fig. 4(a) depicts the simplified
diagram of this two-area system and schematic diagram of ith-area is
shown in Fig. 4(b) [34]. In multi-area system, not only the frequency
deviation but also the tie-line power must return to its scheduled value
during load fluctuations in any area. Therefore, a composite measure,

called area control error (ACE) is utilized in controller as a feedback
variable. For two-area system, =ACE i, 1, 2i are defined as

= +ACE s P s B f s( ) Δ ( ) Δ ( )T1 1 1

= − +ACE s P s B f s( ) Δ ( ) Δ ( )T2 2 2

where = −P f fΔ (Δ Δ )T
T

s 1 2
12 is the tie-line power deviation (p.u.MW) from

the scheduled tie-line exchange power, and T12 is tie-line synchronizing
coefficient (p.u.MW/radian) between area 1 and 2. For two-area power
system, decentralized controllers C s( )1 and C s( )2 can be synthesized
assuming =P sΔ ( ) 0T which implies =T 012 . In this case, the transfer
function of ith control area is given by

=
+

P s B
P s P s P s
P s P s P s R

( )
( ) ( ) ( )

1 ( ) ( ) ( )/i i
G i T i P i

G i T i P i i

, , ,

, , , (35)

where P s P s P s( ), ( ), ( )G i T i P i, , , are the transfer functions of governor, the
turbine and the generator for ith area. Lastly, our aim is to develop
decentralized regulation law which takes the form:

= −u s C s ACE s( ) ( ) ( )i i i so that =→∞ACE t Plim ( ) 0, for all Δt i d i, .

5.2. Reduced model identification

Power systems are highly large interconnected network of power
apparatus. Even a single-area power system plant transfer function (7)
containing single generator is of third-order. Therefore for fast and cost
efficient planning, operations and control, reduced-order models of
power systems are necessary. Here, Routh approximation model re-
duction scheme [29] is applied to obtain second-order model of power
system.

For a single-area plant (7), let the reduced model is ∼P s( ) with
=∼ρ P( ) 2. To apply Routh approximation method [29], we first re-

ciprocate P s( ) using relation

̂ = ⎛
⎝
⎞
⎠

P s
s

P
s

( ) 1 1
(36)

which gives

̂ =
+ + +

P s K s
a s a s a s a

( ) P
2

0
3

1
2

2 3 (37)

Now, expand ̂P s( ) in the following canonical form:

̂ = + +P s β E s β E s E s β E s E s E s( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 1 2 3 1 2 3 (38)

where =β{ }i i 1,2,3 are constants, = +E s α s E s( ) 1 , ( )1 1 2 and E s( )3 are
functions of α2 and α3. Since we are interested in calculating the reduced
model, therefore as described in [29] the second-order reduced model is
given by

̂ = +
+ +

∼P s
α β s β

α α s α s
( )

1
2 1 2

2 1
2

2 (39)

where α1,2 can be calculated with the help of α-table as shown in Table 2
and β1,2 are given by =β K a/P1 1 and =β 02 . On substituting the values
of α1,2 and β1,2 in (39) and further using relation (36), we get the re-
duced model ∼P s( ) as:

=
− + +

∼P s a K
a a a a s a s a a

( )
( )

P1

1 2 0 3
2

1
2

0 1 (40)

Fig. 4. (a) Block diagram of two-area power system and (b) the functional block
diagram of ith control area in LFC framework.

Table 2
−α table.

a0 a2

=α a
a1

0
1

a1 a3

=
−

α
a

a a a a2
1
2

1 2 0 3

−a a a a
a

1 2 0 3
1
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Remark 9. In case of multi-area power system, we know that only Bi is
an additional variable which is to be multiplied with each control area
plant model (refer (35)). Therefore, same reduced model multiplied by
Bi is obtained for each control area.

5.3. Controller synthesis

For single-area power system, the model in (40) resembles with
(21), therefore one can write

= = − = =∼ ∼ ∼k a K d a a a a d a d a a, , ,P1 2 1 2 0 3 1 1
2

0 0 1 (41)

On substituting these values of (41) in (23), the proposed FO-PID
controller can be obtained as

⎜ ⎟⎜ ⎟⎜ ⎟= ⎛
⎝
+ ⎛
⎝
⎞
⎠
+ ⎛
⎝

− ⎞
⎠
⎞
⎠
⎛
⎝
⎞
⎠

C s a
λK

a
a s

a a a a
a

s
s

( ) 1 1 1
P

ψ
1 0

1

1 2 0 3

1
2

(42)

The same procedure is applied for multi-area power system.
Therefore, without the loss of generality, for ith control area, the de-
centralized controller C s( )i is given by

⎜ ⎟⎜ ⎟= ⎛

⎝
⎜ +

⎛
⎝
⎞
⎠
+ ⎛
⎝

− ⎞
⎠

⎞

⎠
⎟⎛⎝

⎞
⎠

C s
a

λB K
a
a s

a a a a
a

s
s

( ) 1 1 1
i

i

i P i

i

i

i i i i

i
ψ

1,

,

0,

1,

1, 2, 0, 3,

1,
2 i (43)

6. Simulation tests

For executing the proposed scheme for single and two-area config-
uration, simulations are carried out using Intel® CORE™ i7 processor
through MATLAB® and Simulink® (using FOMCON toolbox available
athttp://fomcon.net/fomcon-toolbox/download/). The fractional deri-
vative has been implemented by the Oustaloup recursive filter ap-
proximation choosing a frequency range of −[10 , 10 ]3 3 rad/s and order of
filter =N 5. See appendix D for more information. The nominal para-
meters of power system plant are taken as [35]:

= = = = =K T T T R120, 20, 0.3, 0.08, 2.4P P T G (44)

6.1. LFC design for single-area system

On substituting values of (44) in (8), the original plant in (7) is
given by

=
+ + +

P s
s s s

( ) 250
15.88 42.46 106.23 2 (45)

and its reduced-model from (40) becomes

=
+ +

∼P s
s s

( ) 18.38
3.173 7.942 (46)

The time and frequency domain responses of the original plant and the
reduced model as shown in Fig. 5 confirms the resemblance of reduced
model with the original one.

In order to achieve good disturbance rejection performance, the
bandwidth of closed-loop control system should be considerably larger
than the plant to be controlled. Keeping this fact in mind, we select
=ω 15gc rad/s for the closed-loop control system whereas for plant in

closed-loop configuration without controller, =ω 6.52gc rad/s. Further,
=ϕ π/3m is generally selected as a standard phase margin for tuning the

controller. Now on applying the proposed method, the FO-PID con-
troller is obtained as

= ⎛
⎝
+ + ⎞

⎠
⎛
⎝

⎞
⎠

C s
s

s
s

( ) 6.2926 1 2.5026 0.3146 1
0.333 (47)

To show the performance of the proposed controller, a step load
=PΔ 0.01D p.u. is applied at =t 1 s, and± 50% uncertainty is also

added in all the parameters of the power plants to observe the ro-
bustness of the controller, i.e.,

= = = =K T T R[60, 170], [10, 40], [0.04, 0.1], [1.2, 3.6]P P G (48)

Using this controller, disturbance rejection performance is obtained for
nominal plant and perturbed plants (lower and upper bounds). The
main advantage of the proposed controller is that the controller para-
meters need not to be changed even though there exist variations in the
system parameters. To examine the efficiency of the proposed scheme,
the frequency deviation responses of the power system using the pro-
posed scheme is compared with the schemes recently developed by Tan
[35], and Anwar and Pan [36] as shown in Fig. 6. It is observed that the
proposed controller nullifies the change in frequency rapidly with least
variations in its magnitude when compared with the LFC schemes de-
signed by Tan [35] and Anwar and Pan [36]. Thus it can be claimed
that proposed scheme gives better disturbance rejection performance
with least settling time and overshoot for nominal as well as upper and
lower bounds of perturbed system.

To measure the optimality of the proposed scheme, various per-
formance measures defined in the form of integral error criterion
( ∫ ∫ ∫

∫

= = =

=

∞ ∞ ∞

∞

ISE f t dt IAE f t dt ITAE t f t dt IE

f t dt

Δ ( ) ; |Δ ( )| ; |Δ ( )| ;

Δ ( )
0

2
0 0

0

)

are calculated in Table 3. Indirectly, these performance measures de-
note several characteristics like settling time, overshoot, speed of re-
sponse, disturbance rejection, etc. They can be treated as objective
function to investigate optimality of the controller. From Table 3, it is
clear that the values of these objective functions are least for the pro-
posed scheme in comparison to other schemes. Thus, the LFC system
using proposed scheme is optimal in nature.
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Fig. 5. (a) Step and (b) frequency responses of original and reduced-order
model.
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6.2. LFC design for two-area system

We extend our proposed scheme to design decentralized PID tuning
for interconnected two-area power system. As mentioned in (35), one
just needs to multiply the plant model by Bi to design a controller. For
simplicity, the two areas are assumed to be identical and the nominal

parameters of each area are same as given in (44). Therefore, the open-
loop plant model (P s( )1 and P s( )2 ) of both the areas are represented by
(45) which require B1,2 as a multiplier. For LFC design,
= = =B B T0.425, 0.37701 2 12 and =T 0.439821 are taken. With the same

controller tuning settings as given in single-area LFC design, we keep
=ω 15gc rad/s and =ϕ π/3m . Using these controller setting values and

(43), the proposed decentralized controller =C s i( ), 1, 2i for each
control area is obtained as

= ⎛
⎝
+ + ⎞

⎠
⎛
⎝

⎞
⎠

C s
s

s
s

( ) 14.8061 1 2.5026 0.3146 1
i 0.333 (49)

To investigate the efficiency and robustness of the controller, the
parameters of area 2 are perturbed from their nominal values. From
(48), the perturbed values (lower bound) are taken as

= = = = =K T T T R60, 10, 0.15, 0.04, 1.2.P P T G,2 ,2 ,2 ,2 2

The analysis is carried out by keeping the parameters of the area 1 in
nominal state. Now, the step loads of =P sΔ ( ) 0.01d,1 at =t 1 s and

=P sΔ ( ) 0.01d,2 at =t 10 s are applied to area 1 and area 2, respectively.
The frequency and tie-line power deviations of the system using pro-
posed controller, Tan [37], and Padhan and Majhi [38] schemes are
shown in Figs. 7 and 8, respectively. It is observed that the frequency
deviations in both areas settle to zero in minimum time with least
overshoot by the proposed controller in comparison to the responses
obtained by Tan, and Padhan and Majhi techniques. The similar im-
proved performance in comparison to other approaches is also obtained
in case of tie-line power as depicted in Fig. 8. Thus, the proposed
controller rejects the load fluctuations and tolerate the uncertainties of
the plant parameters efficiently.

6.3. LFC design for two-area system having reheated and hydro turbines

To extend the applicability of the proposed control scheme in LFC,
we considered the two-area system in which the area 1 consists of a
reheated turbine of the form

= +
+ +

P s cT s
T s T s

( ) 1
( 1)( 1)T

r

r T (50)

and area 2 consists of hydro turbine of the form

= −
+

P s T s
T s

( ) 1
1 0.5T

w

w (51)

Remark 10. Eq. (51) denotes the non-minimum phase characteristics
due to presence of RHP zero.

For area 1, the model parameters are taken as

= = = = = = =K T T T R T c120, 20, 0.3, 0.08, 2.4, 4.2, 0.35P P T G r

(52)

The plant model now becomes

= +
+ + +

P s s
s s s s

( ) 87.5 59.52
16.12 46.24 48.65 25.34 3 2 (53)

On applying the Routh approximation based reduced-order modeling
method [29], we get

=
+ +

P s
s s

( ) 1.572
1.285 0.66832 (54)

With the specifications =ω 5gc rad/s and =ϕ π/3m , the proposed
scheme using (43) yields

= ⎛
⎝

+ + ⎞
⎠
⎛
⎝

⎞
⎠

C s
s

s
s

( ) 12.7923 1.285 0.6683 1
1 0.333 (55)

For area 2, the hydro turbine power system with following parameters
are considered:

= = = =K T T T1, 6, 4, 0.2.P P w G (56)
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Fig. 6. Frequency deviation for (a) nominal, (b) lower and (c) upper models.
The PID parameters of Tan [35] are: = = =k k k0.4036, 0.6356, 0.1832c i d and
Anwar & Pan [36] are: = = =k k k1.52, 2.50, 0.27c i d .
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The plant model without droop characteristics is

= − +
+ + +

P s s
s s s

( ) 4 1
(0.2 1)(2 1)(6 1) (57)

Eq. (57) can be factorized in non-minimum phase part: = − ++P s s( ) 4 1
and

=
+ + +−P s

s s s
( ) 1

(0.2 1)(2 1)(6 1)
.

(58)

Using (40), the reduced-model concept is applied to −P s( ) which gives

=
+ +−P s

s s
( ) 8.2

111.52 67.24 8.22 (59)

Using the specification =ω 0.09gc rad/s and =ϕ π/4m , the proposed
controller becomes

= ⎛
⎝
+ + ⎞

⎠
⎛
⎝
⎞
⎠

C s
s

s
s

( ) 0.0635 8.2 1 13.6 1
2 0.5 (60)

The proposed controllers are applied to the actual LFC system having
reheated and hydro turbines in area 1 and area 2, respectively. The
responses of frequency and tie-line power deviation of step load of
=PΔ 0.01d i, ( =i 1, 2) occurring at =t 1 s and =t 30 s, respectively, in

area 1 and 2, are presented in Figs. 9 and 10, which shows that the
fluctuations in frequency and tie-line power tend to zero.

6.4. LFC design in presence of GRC and GDB

We consider a more realistic condition of power system where the
physical constraints such as generation rate constraint (GRC) in turbine
and governor dead band (GDB) exist (see Fig. 11). To test the utility of
the proposed controller, the study is extended to the case described in
Section 5.1. A generation rate limitation of 0.1 p.u. per minute is con-
sidered here, i.e., ⩽ =PΔ 0.1 p. u. /min 0.0017 p. u. /sG [37] and the
GDB width considered is 0.036 Hz [40]. Using the specification

Table 3
Performance (× −10 5).

Nominal Lower Upper

Method ISE IAE ITAE IE ISE IAE ITAE IE ISE IAE ITAE IE
Proposed 61.6 249.4 446.8 22.6 13.3 118 243.8 23 1.2 406 786 23
Tan [35] 1355 981.8 1663 981.8 677.8 1524 4106 1524 21.1 2146 4842 1529
Anwar & Pan [36] 261.6 426.1 609.6 400 109.5 400 703.8 400 4.7 876 1756 400
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Fig. 7. Frequency deviation for (a) area 1 and (b) area 2. The parameters of PID
from Tan [37] are: = = =k k k1.5692, 2.3966, 0.5259c i d , and Padhan & Majhi
[38] are: = = =k k k1.9822, 0.5242, 0.1756c i d .
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Fig. 8. Tie-line power deviation for (a) area 1 and (b) area 2.
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=ω 0.01gc rad/s and =ϕ π/4m , the proposed scheme yields

= × ⎛
⎝
+ + ⎞

⎠
⎛
⎝
⎞
⎠

−C s
s

s
s

( ) 1.726 10 1 2.5026 0.3146 14
0.5 (61)

The response of the frequency deviation is depicted in Fig. 12 which
shows that the proposed scheme can also work well in presence of GRC
and GDB constraints.

7. Conclusion and future work

This paper proposes a simple analytical PID load-frequency con-
troller to improve power system performance via fractional-order IMC
tuning and reduced-order modeling scheme. The computer simulations
have been conducted for single and multi-area power systems con-
sisting different types of turbines and physical limitations. The pro-
posed scheme brings good disturbance rejection and eliminates mod-
eling error and parametric uncertainties.

The merits of the proposed scheme can be accounted in terms of
simplicity in the design algorithm because the conventional fractional-
order control schemes require complex mathematical manipulations or
optimization techniques to evaluate the tuning parameters. The other
advantage is that the controller evolved through the design process is
PID controller followed by a fractional-order integrator. As far as LFC is
concerned, this paper will serve a valuable resource for further research
when other physical constraints such as crossover elements in a thermal
unit and communication delays are present in power systems.
Moreover, this work will encourage the researchers to investigate the
efficient reduced-order modeling algorithms for better dynamic per-
formance of power systems.

Appendix A. Asymptotic behavior of T ω(j )

Eq. (18) can be rewritten as

Fig. 9. Frequency deviation for (a) area 1 (reheated turbine) and (b) area 2
(hydro turbine).
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Fig. 10. Tie-line power deviation for (a) area 1 (reheated turbine) and (b) area
2 (hydro turbine).

Fig. 11. (a) Turbine model with GRC and (b) dead-band in governor control
loop.
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Fig. 12. Response in presence of GRC and GDB.
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=

= ×

= − + +

= − ⎛

⎝
⎜

⎡
⎣⎢

+ + ⎤
⎦⎥
⎞

⎠
⎟

= − ⎛

⎝
⎜

⎡
⎣⎢

+ + ⎤
⎦⎥
⎞

⎠
⎟

+ +

+ +

( )

T ω

τω τω

τω

τω

| (j )| 20log

20log

10log 1 2 cos ( )

10log ( ) 2 1

20log ( ) 2 1

τω τω

τω τω

γ γπ γ

γ
τω τω

γ
τω τω

dB
1

1 2 cos ( )

1
2

1
1 2 cos ( )

2
2

2 1
( )

cos

1
( )

cos

γ γπ γ

γ γπ γ

γ

γπ

γ

γ

γπ

γ

2
2

2
2

2
2

2
2

(A.1)

Therefore, the asymptotic behavior of (A.1) is obtained as

≈ −→∞ T ω γ τωlim | (j )| 20 log( )ω dB

Similarly (19) can be produced as

= − ⎡
⎣⎢

⎤
⎦⎥

= − ⎡

⎣
⎢

⎤

⎦
⎥

+

+

T ωarg [ (j )] arctan

arctan

τω

τω sin

1 cos

sin

cos

γ γπ

γ γπ

τωγ
γπ

2

2

γπ
2

1
2 (A.2)

and therefore for (A.2), we have

≈ −→∞ T ω
γπ

lim arg [ (j )]
2ω

Appendix B. Derivation of ωr and Mr

From Definition 4, = =M T ωmax | (j )|r ω ωr and it is maximum when the denominator term of (17), i.e.,

= ⎛
⎝
+ ⎞

⎠
+d ω τω

γπ
τω

γπ
( ) 1 cos

2
j sin

2
γ γ

(B.1)

is minimum. Now differentiate (B.1) with respect to ω, and equate to zero, i.e.,

⎡
⎣
⎛
⎝
+ ⎞

⎠
+ ⎤

⎦
=

ω
τω

γπ
τω

γπd
d

1 cos
2

j sin
2

0γ γ

we get =ω cosr τ
γπ frac τ1
2

1
. On substituting ωr in (18), we get =Mr

1
sin γπ

2

.

Appendix C. Derivation of ωp and ζ

From (16), the characteristic equation is

+ =τs1 0γ

The two poles are given by = ±s eτ1,2
1 jπ

γ . The poles are complex and conjugate and form a center angle θ2 with respect to imaginary ωj axis, where

= −( )θ π 1 γ
1 . Now, from the information of the poles, i.e., through the modulus

τ
1 and θ, we can obtain

⎜ ⎟= = ⎛
⎝
− ⎞
⎠
=ω

τ
θ

τ
π

γ τ
π
γ

1 sin 1 sin 1 1 1 sinp

and

⎜ ⎟= = ⎛
⎝
− ⎞
⎠
= −ζ θ π

γ
π
γ

cos cos 1 1 cos

Appendix D. Integer-order approximation of FO transfer function

In simulation, the Oustaloup method [39] is used to find integer-order approximations of FO transfer function in which

∏= +
+

∼

=

s K s ω
s ω

μ

i

N
i

i1 (D.1)

where =∼ − −ω ω ωi l r
i α N(2 1 )/ , = − +ω ω ωi l r

i α N(2 1 )/ , =K ωh
α and =ωr

ω
ω

h
l
. Note that the number of poles and zeros (N) of approximating transfer function

and the frequency range ( ω ω[ , ]l h ) must be selected before evaluating (D.1). When >μ 1 then it can be written in the form =s s sμ μ δ[ ] where μ[ ] is
greatest integer and then the term sδ is replaced by approximation transfer function (D.1).
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Appendix E. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.ijepes.2018.07.005.
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